PREOPERATIVE THERAPY IN INVASIVE BREAST CANCER

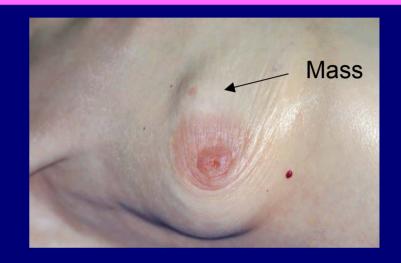
Reviewing the State of the Science and Exploring New Research Directions

Surgical Therapy after Preoperative Chemotherapy

Barbara A. Pockaj, MD Chair, Section of Surgical Oncology Mayo Clinic Arizona

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health


Surgical Decisions

- Breast Conservation Therapy
- Mastectomy
- Sentinel Lymph Node Biopsy
- Breast Reconstruction

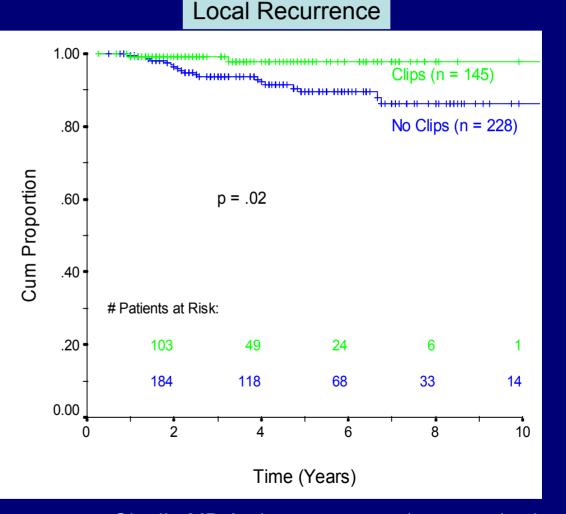
Goals

- Increase the rate of breast conservation therapy (BCT)
 - 80-90% of patients will undergo a response to preoperative chemotherapy
 - Large percentage can then be offered BCT
- Obtain prognostic information

- A surgeon should evaluate the patient at least prior to chemotherapy and before surgery
 - Thorough, <u>documented</u> physical exam
 - Clinical tumor size
 - Location of tumor
 - Lymph node involvement
 - Skin erosion
 - Fixation to the chest wall
 - Skin inflammation

- All patients need to undergo thorough radiographic evaluation prior to chemotherapy and before surgery
 - Mammogram
 - Supplemental ultrasound and MRI
 - All suspicious areas should be biopsied prior to the initiation of chemotherapy
 - Multiple biopsies may be necessary
 - Especially important for patients contemplating BCT

- Location of the tumor needs to be "marked" in some manner prior to initiation of chemotherapy
 - Even in patients who want mastectomy
 - "Patients change their minds"
 - Radiologic clip(s) or coil(s)
 - Outline the extent of tumor on the breast and then photograph the patient
 - Outline extent of tumor on clear sheet of plastic with appropriate breast markings
 - Extent of tumor tattooed on skin
 - Usually 4 points tattooed
 - Calcifications will not disappear after preoperative chemotherapy
 - Can be used as target

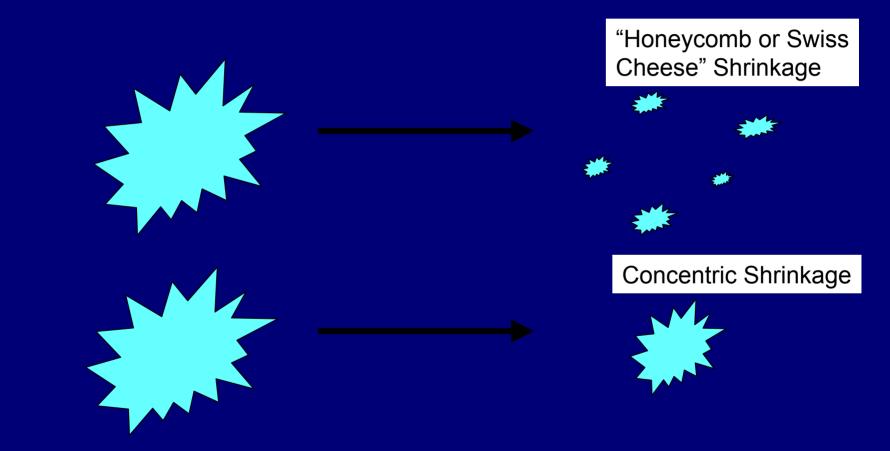

- If tumor is not marked before chemotherapy, subsequent localization for BCT may prove difficult
 - May compromise overall local control
 - Adequate localization may be impaired in up to 30% of cases
 - If patient desires BCT and the tumor was not marked, attempts to localize the tumor based on posttreatment imaging has to be performed
 - Recent study observed that more breast volume excised
 - Quadrantectomy

Dash N, Am J Roentgenol, 1999;173:911 Chattopadyay R, SSO, Abstract #P191

Pre-Operative Clip Placement

On multivariate analysis, the omission of tumor bed clips was associated with a hazard ratio of 3.69 for increased local recurrence compared to patients who did have radiopaque clips placed

(p=.083, 95% CI 0.84-16.16).



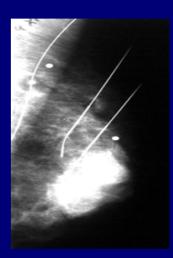
Oh, JL, MD Anderson, personal communication

Timing of Surgery

- Surgery should be performed after predetermined chemotherapy is completed
 - Includes patients with dramatic responses to chemotherapy
 - Patients prefer to complete chemotherapy if possible before surgery
 - Prior to surgery hematologic ramifications need to be assessed
 - All repeat imaging needs to be performed

Tumor Response to Chemotherapy

Post-Chemotherapy Tumor


Pre-Chemotherapy Tumor

BCT Selection

- Same selection criteria used for patients undergoing preoperative chemotherapy or primary surgery
 - Absence of multicentric cancer
 - Selected cases of multifocal cancer appropriate
 - Wide-spread malignant appearing calcifications
 - Ability to excise the residual tumor with <u>negative</u> margins and acceptable cosmetic result
 - Patient able and willing to undergo radiation therapy
- Decision for BCT is made after completion of chemotherapy

BCT

- Technique for BCT is the same as for patients who do not undergo preoperative chemotherapy
 - Key: need to excise all residual palpable and radiologic abnormalities
 - Multiple guidewires or radioactive seeds maybe needed
 - Oncoplastic techniques may facilitate BCT
 - Meticulous assessment of the margins is critical
 - Specimen margins should be inked
 - Adequate margins: controversial
 - Most agree 1-10 mm
 - » My preference is 2 mm

Outcomes of BCT after Preoperative Chemotherapy

BCT Outcomes

GEPARDUO Trial

- Phase III randomized trial with operable breast ca (≥ 2 cm) to preoperative dose dense doxorubicin + docetaxel vs. doxorubicin + cyclophosphamide followed by docetaxel
 - 607 Patients
 - 493 (81%) BCT attempted
 - 450 (74%) BCT successful
 - Tumor size
 - T1 5 (0.8%)
 - T2 438 (72.2%)
 - T3 157 (25.9%)

Loibl S, et al, Ann Surg Oncol, 2006;13:1434

BCT Outcomes GERPARDUO Trial

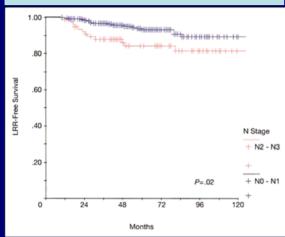
Pre-Operative Predictors of BCT

		Р	value
Variable	No. Patients N (%)	Univariate	Multivariate
Clinical tumor size before chemotherapy (palpation)		< .0001	<.0001
$\geq 40 \text{ mm} (n = 415)$	329 (79.3)		
> 40 mm (n = 185)	118 (63.8)		
Clinical N classification before chemotherapy		.10	
N0 (n = 364)	280 (76.9)		
$\geq N1$ (n = 243)	170 (70.0)		
Histology		< .0001	.003
Ductal $(n = 444)$	349 (78.6)		
Lobular (n = 105)	64 (61.0)		
Grade		< .0001	.46
1 (n = 34)	25 (73.5)		
2(n = 297)	216 (72.7)		
3(n = 195)	164 (84.1)		
Estrogen receptor		.029	.47
Positive $(n = 382)$	281 (73.6)		
Negative $(n = 160)$	128 (80.0)		
Type of neoadjuvant chemotherapy		.028	.047
ADOC $(n = 306)$	215 (70.3)		
AC-DOC $(n = 301)$	235 (78.1)		
Clinical response (palpation)		< .0001	<.0001
CR (n = 260)	215 (82.7)		
PR(n = 210)	153 (72.9)		
SD(n = 98)	62 (63.3)		
PD(n = 13)	5 (38.5)		
Clinical tumor size after chemotherapy (palpation)		< .0001	<.0001
$\leq 20 \ (n = 443)$	355 (80.1)		
> 20 (n = 146)	60 (56.8)		
Center size *		< .0001	.001
≥ 10 patients/center (n = 469)	365 (77.8)		
< 10 patients/center (n = 138)	86 (62.3)		

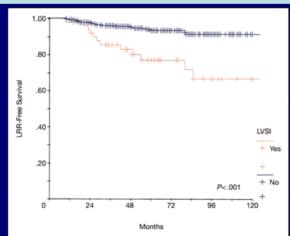
BCT Outcomes GERPARDUO Trial

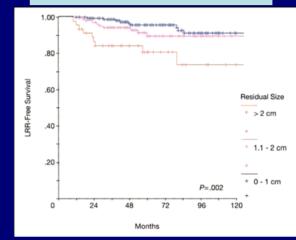
Post-Operative Factors Predicting Successful BCT

		P value	
Variable	No. Patients (%)	Univariate	Multivariate
Pathologic response rate		.002	.004
pCR(n = 71)	62 (87.3)		
No pCR (n $=$ 536)	388 (72.4)		
Pathologic nodal status		<.0001	<.0001
Negative $(n = 356)$	288 (80.9)		
Positive $(n = 250)$	161 (64.4)		
Lymphovascular space invasion		.026	.047
Not present (n $=$ 357)	272 (76.1)		
Present (n $=40$)	24 (60.0)		
Multifocality		.001	<.001
Unifocal disease ($n = 339$)	269 (79.4)		
Multifocal/multicentric disease ($n = 57$)	27 (47.4)		

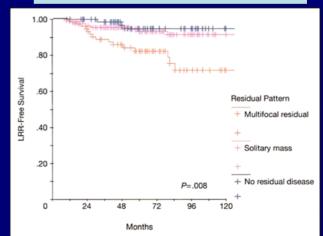

BCT Outcomes GERPARDUO Trial

- Trial Conclusions
 - Majority of patients can undergo BCT after preoperative chemotherapy for operable breast cancer
 - Factors associated with BCT rate were
 - Initial and residual tumor size
 - Response to chemotherapy
 - Histology
 - Invasive lobular carcinoma
 - » Lower BCT rate 56%
 - » Lower clinical response rate (only 5% CR rate)
 - Lymphovascular invasion
 - Pathologic nodal status
 - Multifocality
 - Center size


- Analysis of 340 Patients
- 1987-2000
- Single institution MD Anderson Cancer Center
- Overall local recurrence was 9%
- Increased risk of local recurrence with:
 - Clinical N2 or N3 disease
 - Pathologic residual tumor > 2 cm
 - Multifocal residual tumor pattern
 - Lymphovascular invasion

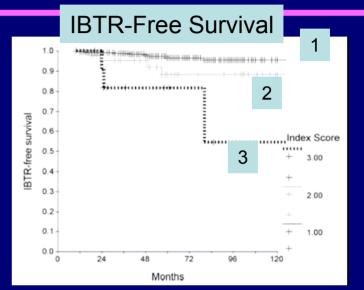

Chen AM, J Clin Oncol, 2004;22:2303

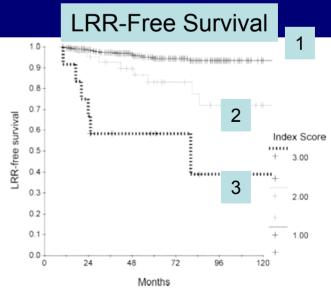
Clinical N0-N1 vs N2-N3


Lymphovascular Invasion

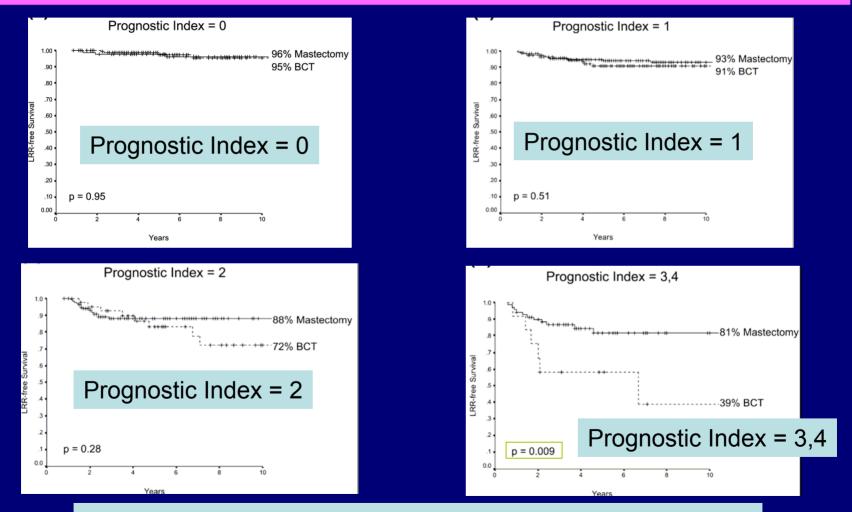
Residual Tumor Size

Residual Tumor Pattern




- This led to the development of a prognostic index score
 - 1 point for each factor present
 - Prognostic score of 0 or 1 had a very low risk of local recurrence
 - Prognostic score of 3 or 4 had a high risk of local recurrence
 - Mastectomy should be considered for these patients
- The prognostic index score still needs to be validated on other data sets

Chen Am, Cancer, 2005;103:689 Huang EH, Int J Rad Onc Biol Phys, 2006;66:352


Rates of IBTR and IBTR-Free Survival According to MDAPI Score						
MDAPI score	No. of patients	No. of patients with IBTR (%)	No. expected	RR	5-yr IBTR-free rate (%)	
0	157	2 (1)	7.0	0.3	99	
1	119	6 (5)	5.5	1.0	94	
2	43	4 (9)	2.0	2.0	88	
3	12	3 (25)	0.7	7.0	82	
4	0	0 (0)	0	NA	NA	

MDAPI score	No. of patients	No. of patients with LRR (%)	No. of expected	RR	5-Yr LRR-free rate (%)
0	157	4 (3)	12.8	0.3	97
1	119	9 (8)	9.9	0.9	91
2	43	8 (19)	3.6	2.2	83
3	12	6 (50)	0.7	8.2	58
4	0	0 (0)	0	NA	NA

Local Recurrence Mastectomy vs. BCT Based on Prognostic Index Score

Patients with a prognostic index core of 0-1 are equally well served by BCT or mastectomy

Local Recurrence after BCT

- Retrospective review 257 patients treated with BCT (1985-1994)
 - A variety of chemotherapy regimens
 - A variety of radiotherapy regimens
 - T stage
 - T1 15 (6%)
 - T2 216 (84%)
 - T3 26 (10%)
 - 159 (62%) were clinical N0
 - 92% infiltrating ductal

Rouzier R, J Clin Oncol, 2001;19:3828

Local Recurrence after BCT

- Local failure at 5 and 10 years is 16% and 21.5%
- Factors associated with local recurrence were age, margin status, Sphase, and tumor size at surgery
- Pre-chemotherapy factors did not play a role
- Local recurrence negatively impacted overall survival

	0		
Covariate	RR	95% Confidence Interval	P
Age			
> 40 years	1		
≤ 40 years	3.55	1.89-6.67	< .001
Margin status			
> 2 mm	1		
≤ 2 mm	2.48	1.26-4.86	.04
Positive	0.94	0.35-2.54	
S-phase fraction			
≤ 4%	1		
> 4%	2.64	1.19-5.85	.03
Size at surgery			
≤ 2 cm	1		
> 2 cm	2.09	1.08-4.03	.04

Margin status:	
Positive	11%
Close (<u><</u> 2 mm)	18%
Negative	67%
Unknown	4%

Rouzier R, J Clin Oncol, 2001;19:3828

Nomograms

- 3 published preoperative nomograms
 Prediction of CR
 - Prediction of residual tumor < 3 cm</p>
 - Surrogate for the ability to perform BCT
 - Prediction of BCT after preoperative chemotherapy

Rouzier R, et al, J Clin Oncol, 2005;23:8331 Rouzier R, et al, Cancer, 2006;107:1459

Nomogram - BCT

Points	0 10 20 30 40 50 60 70 80 90 100 negative	Points 0 10 20 30 40 50 60 70 80 90 100 negative
ER status	positive	ER status positive
initial diameter (cm)	12 11 ₂ 10 9 8 7 6 5 4 3	initial diameter (cm) 12_{2} 11 10 9 8 7 6 5 4 3 2 1 0
histologic grade	1 3 no	histologic grade 1 3 no
multicentricity	yes ductal	multicentricity yes ductal
histologic type	lobular	histologic type lobular
Total Points	0 50 100 150 200 250 300	Total Points 0 20 40 60 80 100 120 140 160 180 200 220
Probability of breast conservation (%	10 20 30 40 50 60 70 80	Probability of 40 breast conservation (%) 10 20 30 40 50 60 700 80

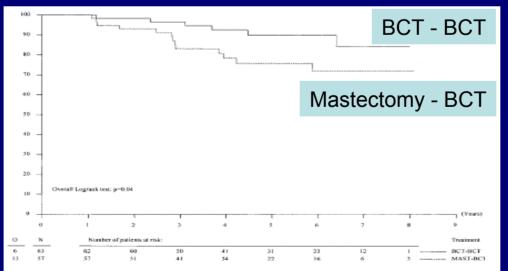
- Prediction of BCT after anthracycline or anthracycline + taxane chemotherapy was based on tumor characteristics
 - ER status, tumor diameter, histologic grade, multicentricity, histologic type
- Concordance index was 0.67

Rouzier R, et al, Cancer, 2006;107:1459

Conversion of Mastectomy to BCT

- Data regarding local recurrence is conflicting
- Some studies demonstrate increase rate of local recurrence other do not

NSABP B18


- Overall, no difference in local recurrence in BCT patients – pre-operative (10.7%) vs. post-operative (7.6%) chemotherapy
- Difference in preoperative chemotherapy group determined to be secondary to:
 - Age
 - Tumor size at presentation

Wolmark N, JNCI, 2001;30:96

EORTC 10902

- Randomized patients to preoperative and postoperative chemotherapy
- 698 Patients
- 199 underwent BCT
- Overall Local Recurrence 10% in both groups (BCT + Mastectomy)
- Only patient who underwent BCT after chemotherapy analyzed
 - Patients who converted from mastectomy to BCT had worse overall survival than those who were initially BCT eligible

Van der Hage JA, J Clin Oncol, 2001;19:4224

Impact of Margin Status

- Retrospective review 390 patients
 - 1994-2002
 - Single institution European Institute of Oncology, Milan, Italy
 - All T2 or T3 tumors
 - 76% T2
 - All patients mastectomy only candidates
 - 195 (63%) underwent BCT
 - 72% T2
 - 34% T3
 - Median F/U 41 months

Gentilini O, J Surg Oncol, 2006;94:375

Impact of Margin Status

BCT patients

- 19% pCR
- 44% tumors <2 cm</p>
- 24 (12%) +margins on final pathology (not re-excised)
- 13 (7%) local recurrence
 - 5% with –margins
 - 13% with +margins
- Local recurrence did not influence overall survival
 - Short F/U
- Conclusion: margin status important in overall local control

Gentilini O, J Surg Oncol, 2006;94:375

Local Recurrence after BCT

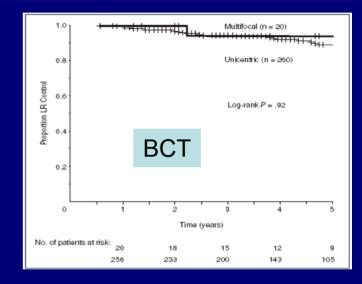
- Many single center studies report much lower local recurrence rates than multiinstitutional trials
 - Not all have addressed initial surgical options
 - Lower incidence of local recurrence attributed to:
 - Multi-disciplinary approach
 - Strict BCT guidelines
 - Large volume centers

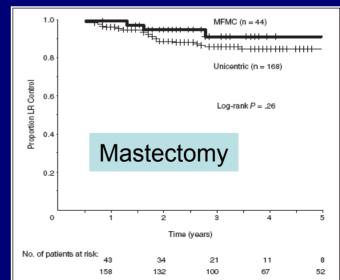
Special

Considerations

Multifocal or Multicentric (MFMC) Breast Cancer

- Retrospective analysis of 706 patients treated with preoperative chemotherapy
- 97 (14%) had MFMC disease
 - Diagnosed before starting chemotherapy
- Patients where all tumor could be removed through one lumpectomy were offered BCT


Table 1. Patient and Tumor Characteristics							
		Patients					
	Unice (n =		MEI (n =				
Characteristic	No.	%	No.	%	χ^2 test P		
Age, years							
< 35	96	16	18	19	.487		
≥ 35	513	84	79	81			
Nuclear grade							
1-2	388	64	63	65			
3	133	22	28	29	.192		
Unknown	88	14	6	6			
Tumor stage							
1	51	8	11	11	.689		
2	272	45	47	49			
3	185	30	26	27			
4	101	17	13	13			
Node stage							
0	184	30	37	38	.293		
1	279	46	39	40			
2-3	146	24	21	22			
Stage							
I-II	313	51	59	61	.084		
III	296	49	38	39			
Estrogen receptor							
Negative	247	41	38	39	.535		
Positive	271	44	48	50			
Unknown	91	15	11	11			


Abbreviation: MFMC, multifocal and multicentric.

Oh JL, J Clin Oncol, 2006;24:4971

Multifocal and Multicentric (MFMC) Breast Cancer

- Mean F/U was 66 months
- Overall locoregional failure was 7% in patients with MFMC disease and 10% in patients with unifocal disease
 - Equal success with BCT or mastectomy
- Only 20 patient with multifocal disease underwent BCT

Infiltrating Lobular Carcinoma

Study	N	Pathologic CR	BCT
Tubiana-Hulin,	ILC 118 14%	1%	30%
2006	IDC 742 88%	9%	48%
Cristofanilli,	ILC 122 (12%)	3%	16%
2005	IDC 912 (88%)	15%	29%
Cocquyt, 2003	ILC 26 (19%)	0%	38%
	IDC 101 (75%)	15%	50%

Tubiana-Hulin M, Ann Oncol, 2006;17:1228 Cristofanilli S, J Clin Oncol, 2005;23:41 Cocquyt VF, Eur J Surg Oncol, 2003:29:361

NSABP B27 IDC vs. ILC

Ipsilateral Breast Tumor Recurrence

Histologic Type	# Pts	# IBTR	Annual IBTR Rate (%)	
Ductal	989	41	3.72	
Lobular	151	2	2.09	
P-value in Cox proportional hazards = 0.09				

Clinical Prediction of pCR

Variable	Coeff	SE	P- value	Odds Ratio	95% CI
Ireatment (Pre-OP AC ¹ , Pre-OP AC+T)	0.774	0.166	< 0.0001	2.167	1.566 – 2.999
Clinicál Nodal Status (Negative [†] , Positive)	0.366	0.173	0.034	1.443	1.028 – 2.024
Histologic Type (Ductal [†] , Lobular)	0.543	0.289	0.060	1.721	0.977 – 3 030

† Baseline for comparison

Model based on 1108 patients for whom all covariates were known

Julian TB, et al, SABC 2006, SSO 2007

Conclusions

- Surgeons are integral in the multidisciplinary approach to breast cancer patients
 - Need to evaluate patients before preoperative chemotherapy and after
- Breast conservation therapy safe and effective after pre-operative chemotherapy
 - Increases the options for women with breast cancer

Conclusions

- Appropriate selection criteria for BCT must be employed
 - Thorough pre-operative assessment is critical
 - Factors consistently associated with successful BCT (not absolute criteria)
 - olute criteria)
 - residual tumor
 - scular invasion
 - esidual disease
 - Histology IDC egative margins
 - ectomy specimen

Thank You

Questions?

