Initial Pathology Assessment to Preoperative Therapy

Baljit Singh, M.D
Director, Breast Pathology
New York University,
New York, NY.
Initial Pathology Assessment Prior to Preoperative Therapy

Needle Core Biopsy

- Diagnosis of invasive carcinoma prior to neoadjuvant therapy is best made by Needle Core Biopsy and not Fine Needle Aspiration
 - Positive predictive value
 - 98 - 99.8 %
 - Biomarker assessment
 - Tissue procurement for research
Initial Pathology Assessment Prior to Preoperative Therapy

Needle Core Biopsy

- Concordance with Final Pathology
 - Invasive Carcinoma type - 67 - 81 %
 - Size
 - Under/Overestimate 72 – 79%
 - Grade - 59 - 75 %
 - Poorly differentiated carcinoma 84%
 - Lymphovascular Involvement 8%
Initial Pathology Assessment Prior to Preoperative Therapy

Needle Core Biopsy

- **Adequacy of Samples**
 - Diagnosis
 - Biomarker Analysis
 - Novel Assays
 - Research
- **Multiple Cores (4-6)**
 - More volume with wider bore needles
ACCURACY OF DIAGNOSIS

How can the accuracy of breast pathology diagnostics be improved?

• Quality Control Program
• Second Opinion
• Integration of pathologists in patient care teams

BIOMARKER ANALYSIS

- Concordance of biomarker status between NCB and surgical excision specimen
 - Estrogen Receptor: 79 - 95%
 - Progesterone Receptor: 69 - 95%
 - Her2/neu (IHC): 80 - 96%
 - Her2/neu (FISH): 100 %

Double-Blind Randomized Study of Neoadjuvant Tamoxifen vs Letrozole

Biopsy

ER+ and/or PgR+
Postmenopausal
Not eligible for BCS

RANDOMIZE

Tamoxifen
4 months

Letrozole
4 months

Surgery

Adjuvant therapy as appropriate

Clinical Results Summary for “On-Study Biopsy”
Confirmed ER+ and/or PgR+ Cases

12 % CASES ER-/PR- ON CENTRAL ANALYSIS

<table>
<thead>
<tr>
<th></th>
<th>Letrozole</th>
<th>Tamoxifen</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmed (ER+/PgR+)</td>
<td>124 (100%)</td>
<td>126 (100%)</td>
<td></td>
</tr>
<tr>
<td>Overall tumor response</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CR+PR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td>74 (60%)</td>
<td>52 (41%)</td>
<td>0.004</td>
</tr>
<tr>
<td>Ultrasound</td>
<td>48 (39%)</td>
<td>37 (29%)</td>
<td>0.119</td>
</tr>
<tr>
<td>Mammography</td>
<td>47 (37%)</td>
<td>25 (20%)</td>
<td>0.002</td>
</tr>
<tr>
<td>Breast-conserving surgery</td>
<td>60 (48%)</td>
<td>45 (36%)</td>
<td>0.036</td>
</tr>
<tr>
<td>Clinical disease progression</td>
<td>10 (8%)</td>
<td>15 (12%)</td>
<td>0.303</td>
</tr>
</tbody>
</table>

¹Stratified Mantel-Haenszel chi-squared test

Initial Pathology Assessment Prior to Preoperative Therapy

BIOMARKER ANALYSIS

Estrogen And Progesterone Receptor Status Assessment By IHC Is Not a Standardized Test
Initial Pathology Assessment Prior to Preoperative Therapy

HER2 ASCO/CAO Testing Guidelines

THE PROBLEM

• False positive IHC (3- 50%)
 – Non-standardized Methods
 – No automation
 – Small Volume
• FISH laboratory variability 5-23 %

THE SOLUTION

• ASCO/CAP Guidelines
 – Specimen handling
 – Exclusion criteria
 – Assay validation
 – Laboratory testing
 – Controls
 – Reporting Criteria
Initial Pathology Assessment Prior to Preoperative Therapy

BIOMARKER ANALYSIS

• Hormone receptor negative
• Her2 negative
• Discordance with histology

• REPEAT ASSAY
Initial Pathology Assessment Prior to Preoperative Therapy

Image Guided Core Biopsy – Tumor Yield

- **Tumor Yield is higher**
 - Image guidance
 - First pass
 - Prior to any chemotherapy

<table>
<thead>
<tr>
<th>biopsy method</th>
<th>number of cores</th>
<th>tumor yield (% of core)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>>=30%</td>
</tr>
<tr>
<td>US</td>
<td>160</td>
<td>90 (56%)</td>
</tr>
<tr>
<td>MR</td>
<td>58</td>
<td>43 (74%)</td>
</tr>
<tr>
<td>palpation</td>
<td>212</td>
<td>84 (40%)</td>
</tr>
<tr>
<td>all</td>
<td>430</td>
<td>217 (50%)</td>
</tr>
</tbody>
</table>

Rosen M et al. Factors Affecting Quality of Tumor Core Biopsy Specimens in ISPY TRIAL. SABCS 2006
Image Guided Core Biopsy

Image Guided Core Biopsy should be the standard diagnostic procedure prior to neoadjuvant therapy
TISSUE BANKING

Guidelines from BIG/North American Cooperative Groups breast cancer specimen collection working groups

• **Goals:**

 • To promote and ensure proper collection of high-quality research specimen such that each patient diagnosed with breast cancer can have a reliable, interpretable molecular diagnosis.

 • To provide a known baseline of standardization of specimen collection and handling procedure, to the extent possible, such that more global biomarker analysis across studies is possible.

 • To promote specimen collection that would allow for future technologies, particularly in the molecular arena, to be applied to specimens for research.

 • Ultimately, to increase scientist confidence in pre-analysis variable control, to guarantee excellent quality of breast cancer specimens.

• **Concrete aim:**

 • To develop SOP templates that Group trial leadership can incorporate into clinical trial protocols.
FRESH TISSUE GUIDELINES

- Background and rationale for fresh tissue collection
- Notable “Do’s and Don’t’s”
- Recommended SOP’s:
 1. Brochure used by EORTC p53 study (Protocol 10994)
 2. SOP for TuBaFrost (European Human Frozen Tumour Tissue Bank)
 3. MIND ACT SOP’s (drafts now developed)
- Settings for specimen acquisition:
 - Diagnostic setting
 - Post-diagnostic preoperative setting
 - Surgical setting

http://ctep.cancer.gov/guidelines/spec_bc.grprials.html
Initial Pathology Assessment Prior to Preoperative Therapy

SUMMARY

- Image guided core biopsy is the standard diagnostic procedure for preoperative diagnosis
 - Multiple cores (4-6)
- Accuracy of diagnosis
- Biomarker Assays can be accurately performed on core biopsy specimens with appropriate quality control measures
- Tissue should be collected for research using published guidelines