Inflammatory Breast Cancer: A Unique Pathologic Entity?

Sandra M. Swain, M.D.
Director, Washington Cancer Institute
Washington Hospital Center
Washington DC
Outline

• Overview
• Therapy
 – High dose chemotherapy
 – NCI – 0173 bevacizumab study
 – Metronomic therapy
 – Lapatinib
• Future Directions
Inflammatory Breast Cancer

- Rare, 2% in U.S., higher in other countries
- Most aggressive form of breast cancer

- Clinical diagnosis
 - diffuse erythema
 - *peau d’orange*
 - often no palpable mass
Locally advanced breast carcinoma (IBC and LABC)

- There is a long-standing debate concerning whether IBC and LABC reflect an advanced breast cancer continuum or discrete clinicopathologic entities?

Inflammatory Breast Cancer

- Small increased incidence in US over 30 years
- Higher incidence in Blacks than Whites
- Younger age than non-IBC
- Weak association with pregnancy/lactation, family history, and larger BMI
- Tunisian studies link increased incidence: rural residence, hyperimmune response, and MMTV

Mammogram of patient with IBC

Courtesy of C. Chow
Inflammatory Breast Cancer

- Dermal lymphatic invasion (Not required)
- No increased inflammatory cells
- More frequently ER/PR negative Her-2/neu positive
- TNM - T4d - “majority of breast”
Inflammatory Breast Cancer
Standard Treatment

Primary Chemotherapy*

\[\downarrow \]

Mastectomy

With delayed reconstruction

\[\downarrow \]

RT

\[\downarrow \]

Hormonal Therapy

*Trastuzumab for HER2 positive tumors
Survival and Prognosis of IBC: Single Institution Experiences

<table>
<thead>
<tr>
<th>Institution</th>
<th>N</th>
<th>Regimen</th>
<th>Median survival (months)</th>
<th>5 yr</th>
<th>10 yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD Anderson</td>
<td>178</td>
<td>FAC</td>
<td>37</td>
<td>40%</td>
<td>33%</td>
</tr>
<tr>
<td>Centre H. Becquerel</td>
<td>178</td>
<td>AVCF, FAC, FEC</td>
<td>37</td>
<td>32%</td>
<td>23%</td>
</tr>
<tr>
<td>Institut Gustav Roussy</td>
<td>230</td>
<td>RT +/- AVM/VCF, AVCMF</td>
<td>36</td>
<td>42-74% at 4 years</td>
<td></td>
</tr>
</tbody>
</table>
IBC Survival: NCI MB 198

- Non-Inflammatory (42%)
- Inflammatory (20%)

Years from On-Study Date

All breast cancer cases

A: Year after diagnosis

% surviving free of breast cancer death

ER Positive

ER Negative

B: Year after diagnosis

Percent annual hazard rate

All breast cancer cases

Inflammatory breast cancer

C: Year after diagnosis

% surviving free of breast cancer death

D: Year after diagnosis

Percent annual hazard rate

Inflammatory breast cancer

British Columbia: Population-Based Survival Analysis

• Retrospective study from 1980-2000 of 485 IBC patients – 1/3 metastatic at diagnosis
• In 308 pts - more intensive chemo improved survival (data limited)
• Mastectomy improved local control: LRFS 59-63% with Mx and 34% without

Panades, J Clin Oncol 23:1941, 2005
High Dose Chemotherapy in IBC

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>pCR(%)</th>
<th>OS(%)</th>
<th>yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viens</td>
<td>100</td>
<td>32</td>
<td>70</td>
<td>3</td>
</tr>
<tr>
<td>Adkins</td>
<td>47</td>
<td>3</td>
<td>59</td>
<td>4</td>
</tr>
<tr>
<td>Bertucci</td>
<td>74</td>
<td>27</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>Somlo</td>
<td>120</td>
<td>NA</td>
<td>60</td>
<td>5</td>
</tr>
<tr>
<td>Ayash</td>
<td>50</td>
<td>14</td>
<td>64</td>
<td>2.3</td>
</tr>
<tr>
<td>Dazzi</td>
<td>21</td>
<td>21</td>
<td>52</td>
<td>4</td>
</tr>
</tbody>
</table>
Molecular characteristics of IBC

- Overexpression of E-Cadherin, MUC1, RhoC- GTPase, and p53
- Loss of LIBC/WISP3 or IGFBP-rp (tumor suppressor gene)
- Increase in angiogenic and lymphangiogenic (VEGFC and D) factors
Increased Microvessel Density in Inflammatory Breast Cancer

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>MVD (Range)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBC</td>
<td>45</td>
<td>25.5 (0-110.0)</td>
<td>0.009</td>
</tr>
<tr>
<td>Non-IBC</td>
<td>22</td>
<td>6.5 (0-92.5)</td>
<td></td>
</tr>
</tbody>
</table>

McCarthy et al., Clin Cancer Res 2002; 8: 3857
NCI-0173 – IBC and LABC

Surgery → RT

Hormonal therapy if ER+

Correlative studies
- Dynamic Contrast Enhanced MRI (DCE-MRI)
- Tumor Biopsies (mammotome)

\[\text{Docetaxel 75 mg/m}^2 \]
\[\text{Doxorubicin 50 mg/m}^2 \]
\[\text{Bevacizumab 15 mg/kg} \]

Wedam et al., J Clin Oncol 2006; 24:769
NCI-0173 Responses to Bevacizumab and Chemotherapy

Total Patients: N= 21

- Partial Response: 14 (67%)
 - Pathologic CR: 1
- Stable Disease: 5 (24%)
- Progressive Disease: 2 (9%)

Wedam et al., J Clin Oncol 2006; 24:769
<table>
<thead>
<tr>
<th>Marker</th>
<th>Baseline</th>
<th>Change</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ki67</td>
<td>+2% (NS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MVD</td>
<td>-15% (NS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEGF-A</td>
<td>-50% (NS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEGFR2</td>
<td>+70% (NS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVEGFR2 (Y996)</td>
<td>-69% (0.024)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVEGFR2 (Y951)</td>
<td>-67% (0.004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TUNEL</td>
<td>+129% (0.0008)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NCI-0173 DCE-MRI Time Intensity Comparisons

Increased uptake of contrast in tumor reflecting permeability and flow

Wedam et al., J Clin Oncol 2006; 24:769
Excellent clinical response to combined anti-angiogenic and chemotherapy

Correlative studies after bevacizumab
- Decrease in phospho-VEGFR2 (tumor cells)
- Increase in tumor apoptosis (tumor cells)
- Decrease in vascular permeability + flow on DCE-MRI

Gene expression profiling in process for IBC signature

Wedam et al., J Clin Oncol 2006; 24:769
SWOG 0012
Conventional vs Metronomic Schedule

5 X AC q 3 wk
(DI 20, 200)
→ paclitaxel wkly x 12

A qwk + C qd X 15 wks
(DI 24, 420) + GCSF
→ paclitaxel wkly x12

Ellis, et al ASCO 2006
SWOG 0012

• Accrual: 10/ 2002 – 12/2005
• Eligibility: locally advanced breast cancer, 372 patients randomized
• 265 evaluable for primary outcome, 132 arm 1, 133 arm 2, including those who did not proceed to surgery
 – 81 pts with IBC
SWOG 0012: Conclusions

- **Arm 1 AC → P**: pCR* 19%
 - pCR+N0 15%
 - OR = 2.11
 - 95% CI = 1.13 - 3.96, p = 0.020

- **Arm 2 AC+G → P**: pCR 31%
 - pCR+N0 26%

Inflammatory Breast Cancer

- pCR: 12%
 - 32%
Responses seen in IBC Phase I lapatinib studies
EGF103009 Lapatinib Refractory/Relapsed IBC Study Schema

- **Cohort A**
 - HER2+
 - Pre-treatment tumor biopsy
 - Administer lapatinib (1500 mg/d)
 - RECIST criteria and *chest wall/skin response documented by Canfield digital photography
 - Post-treatment Biopsy Day 28

- **Cohort B**
 - HER1+/HER2-

Trudeau et al., ESMO 2006C
EGF103009 Baseline Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age</td>
<td>53 (32-79)</td>
</tr>
<tr>
<td>Dermal lymphatic invasion</td>
<td>75%</td>
</tr>
<tr>
<td>Stage</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>21%</td>
</tr>
<tr>
<td>IV</td>
<td>79%</td>
</tr>
<tr>
<td>Median chemo regimens</td>
<td>4.5 (0-21)</td>
</tr>
<tr>
<td>Anthracycline</td>
<td>98%</td>
</tr>
<tr>
<td>Anthracycline/Taxane</td>
<td>78%</td>
</tr>
<tr>
<td>Trastuzumab</td>
<td>75% (Cohort A)</td>
</tr>
<tr>
<td>Sites</td>
<td></td>
</tr>
<tr>
<td>North America/Israel/EU</td>
<td>71%</td>
</tr>
<tr>
<td>Tunisia</td>
<td>29%</td>
</tr>
</tbody>
</table>

*based on data from 49 patients; efficacy/safety data from 47 patients

Trudeau et al., ESMO 2006
EGF103009 Response Rate to Lapatinib Monotherapy

- Skin - 17 CR/PR
- RECIST - 9 PR

Trudeau et al., ESMO 2006
Biomarker Characterization of Responders to Lapatinib

- HER2 (ErbB2) (FISH+/IHC 3+): 94%
- pErbB-2: 80%
- ER+: 29%
- IGF-1R: 100%
- PTEN deficient (IHC 0 or 1+): 73%
- mutant p53: 36%

Trudeau et al., ESMO 2006
EGF102580 Lapatinib Plus Paclitaxel as Neoadjuvant Therapy in Newly-Diagnosed Inflammatory Breast Cancer

Cohort A: HER2 overexpressors

Cohort B: HER2 non-overexpressors

Lapatinib Monotherapy x 14 days

Pre-dose Tumor Biopsy

12 weeks
IV Paclitaxel 80 mg/m²/week
+ Lapatinib 1500 mg PO once daily

Combination Therapy

Surgical Resection

Tumor Tissue (250 mg) at time of Surgical Resection
Assessment of pCR Biomarker Analysis

Cristofanilli, SABCS 2006
Objective Response Rates

Clinical Skin/Chest Wall Responses

<table>
<thead>
<tr>
<th>Response Type</th>
<th>Cohort A (HER2+)</th>
<th>Cohort B (HER2-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Response (CR)</td>
<td>3 (10%)</td>
<td>0</td>
</tr>
<tr>
<td>Partial Response (PR)</td>
<td>20 (67%)</td>
<td>4 (80%)</td>
</tr>
<tr>
<td>Stable Disease (SD)</td>
<td>3 (10%)</td>
<td>0</td>
</tr>
<tr>
<td>Progressive Disease (PD)</td>
<td>0</td>
<td>1 (20%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>4 (13%)</td>
<td>0</td>
</tr>
</tbody>
</table>

Response Rate (CR or PR)

- Cohort A: 77%
- Cohort B: 80%

Clinical response to lapatinib monotherapy (d14)

- Cohort A: 10 (30%)
- Cohort B: 0

Pathological Complete Responses

- Cohort A: 3/18 (17%)
- Cohort B: 0/3

Defined as no evidence of residual invasive tumor, including no residual tumor in the axillary lymph nodes
Functional Imaging to Evaluate Response to Lapatinib
Biomarker Analyses

IBC Phenotype

Candidate Predictors of Response to Lapatinib

% Patients

Cohort A
Cohort B

ER PR E-Cad p53 RhoC

ErbB1 ErbB2 ErbB3 IGF1R PTEN HRG TGFα

phosphorylated
Lapatinib in IBC

- Short course has 30% RR in previously untreated patients
- Monotherapy has 50% RR in heavily pretreated patients
- Activity almost exclusively in pts with HER2 positive disease
- Responses seen with PTEN deficiency or mutant p53
Molecular Profiling of IBC

- 109 gene signature – over expression of basal phenotype
- NFκ-B overexpression
- Her-2/neu overexpression
- 16 pathways and 61 GO categories discriminate from non-IBC

RT-PCR
- 27 upregulated genes
- Increased expression of angiogenesis and lymphangiogenesis related genes

Summary

• IBC is a rare disease with poor prognosis
• Anti-angiogenic therapy results in direct tumor effect
• Lapatinib effective in HER2 positive IBC
• Important to define molecular signature of IBC and predictors of response