Pathologic Assessment Of The Breast And Axilla After Preoperative Therapy

W. Fraser Symmans, M.D.
Associate Professor of Pathology
UT M.D. Anderson Cancer Center
Pathologic Complete Response (pCR)

Proof of no residual invasive cancer requires:
- Identification of the tumor bed location
- Adequate sampling for microscopic study
Pathologic Complete Response: NSABP-B27

pCR in the breast

Nodal status in pCR patients

Bear et al JCO 2006 24:2019-27
Pathologic AJCC Stage After Preoperative Chemotherapy: UNC

N = 132

Carey et al JNCI 2005 97:1137-42
Residual Ductal Carcinoma *in situ* Alone: MDACC

N = 2302

pCR with DCIS only in:
- 3% of overall MDACC experience
- 7% of recent T/FAC study

Mazouni et al JCO, in press
Nodal Micrometastasis After Preoperative Chemotherapy: NSABP-B18

Any nodal disease after neoadjuvant chemotherapy is relevant

<table>
<thead>
<tr>
<th>Postoperative Chemotherapy</th>
<th>Preoperative Chemotherapy</th>
</tr>
</thead>
</table>

Metastasis < 2 mm in:
10% of postoperative chemotherapy patients
17% of preoperative chemotherapy patients

4% of recent MDACC T/FAC study

Fisher et al Cancer 2002 95:681-95
Pathologic Complete Response

No residual invasive cancer & node-negative

Residual *in situ* disease only
- Current prognostic data are limited
- Prognosis similar to pCR (few studies)
- Relevant for local control

Residual nodal micrometastasis
- Prognosis is the same as node-positive
The Extent Of Residual Cancer Is Variable
Histopathological Response Is Also Variable

Core Biopsy → Resection

A. 2.0 cm
B. 1.8 cm
C. 1.7 cm
D. 1.5 cm
Reduction in Tumor Cellularity: “Miller and Payne”

Histopathology scoring system to assess response
Compares cancer cellularity of the core biopsy (before treatment) with the resected tumor (after treatment)

Grade 1: No reduction
Grade 2: Minor loss (≤ 30%)
Grade 3: Some loss (30% - 90%)
Grade 4: Marked loss (> 90%)
Grade 5: No residual invasive cancer

170 patients Tumor ≥ 4 cm
Rx: CVAP 4 - 6 cycles

Grade 1: 15%
Grade 2: 24%
Grade 3: 27%
Grade 4: 20%
Grade 5: 14%

Ogston et al The Breast 2003 12:320-7
Reduction in tumor cellularity is related to residual tumor size

T/FAC, n = 108

The greatest cellularity reduction occurs in residual tumors ≤ 1 cm

Reduction in cellularity is variable in all T-stage groups

Rajan et al Cancer 2004 100:1365-73
Honkoop Classification

<table>
<thead>
<tr>
<th>pCR</th>
<th>No cancer in breast or axillary nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal Residual Disease</td>
<td>Only microscopic RD in breast or axillary nodes</td>
</tr>
<tr>
<td>Macroscopic Residual Disease</td>
<td>Macroscopic RD in breast or axillary nodes</td>
</tr>
</tbody>
</table>

Chevallier Classification

<table>
<thead>
<tr>
<th>Grade 1</th>
<th>No cancer in breast or axillary nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 2</td>
<td>Only in situ carcinoma remains, nodes are negative</td>
</tr>
<tr>
<td>Grade 3</td>
<td>Invasive carcinoma with stromal fibrosis</td>
</tr>
<tr>
<td>Grade 4</td>
<td>No or few modifications of stromal fibrosis</td>
</tr>
</tbody>
</table>

Sataloff Classification

<table>
<thead>
<tr>
<th>Primary Tumor</th>
<th>Axillary Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T-A</td>
</tr>
<tr>
<td></td>
<td>Total or near-total therapeutic effect</td>
</tr>
<tr>
<td>N-A</td>
<td>N-B</td>
</tr>
<tr>
<td>N-</td>
<td>N+</td>
</tr>
<tr>
<td>Evidence of therapeutic effect</td>
<td>No evidence of therapeutic effect</td>
</tr>
</tbody>
</table>
Relevant Prognostic Variables In The Post-treatment Pathologic Specimen

• Primary Tumor
 – Size
 – Cellularity
 – Invasive vs. *in situ*
 – Margins

• Axillary Lymph Nodes
 – Number of positive nodes
 – Size of metastases
 – Extranodal extension
Irregular hypoechoic mass in 1 o'clock position of right breast

Tumor nidus 1.1 x 0.9 x 0.8 cm, but extends laterally for maximum dimension of 2.6 cm

No evidence for abnormal axillary, internal mammary, or infraclavicular adenopathy

Invasive ductal carcinoma

Low grade

ER 100%

PR 100%

FISH (HER2 / cep17) 1.14

Ki-67 10%
RIGHT BREAST, 1 O'CLOCK POSITION, SEGMENTAL MASTECTOMY:

RESIDUAL INVASIVE DUCTAL CARCINOMA MEASURES 0.8 X 0.6 CM AND CONTAINS APPROXIMATELY 20% CANCER CELLULARITY BY AREA, WITH 1% INTRADUCTAL COMPONENT.
SURROUNDING RESIDUAL FIBROUS TUMOR BED (2.7 X 1.0 CM) CONTAINING RARE SINGLE DUCTS WITH INTRADUCTAL CARCINOMA.
Margins of resection are free of tumor.

SENTINEL LYMPH NODE #1, RIGHT AXILLA, BIOPSY:
One lymph node, free of tumor (0/1).
Cytokeratin stain is negative.

NONSENSENL LYMHP NODE, RIGHT AXILLA, BIOPSY:
One lymph node, free of tumor (0/1).
Residual Cancer Burden Calculator

(1) Primary Tumor Bed
- Primary Tumor Bed Area: \(8\text{ (mm)} \times 6\text{ (mm)}\)
- Overall Cancer Cellularity (as percentage of area): \(20\%\)
- Percentage of Cancer That Is in situ Disease: \(1\%\)

(2) Lymph Nodes
- Number of Positive Lymph Nodes: \(0\)
- Diameter of Largest Metastasis: \(0\text{ (mm)}\)

Residual Cancer Burden: \(1.477\)
Residual Cancer Burden Class: RCB-II

Symmans et al ASCO 2006 #536
Residual Cancer Burden (RCB)

Primary Tumor Bed

\[d_{prim} = \sqrt{d_1 d_2} \]

\(f_{inv} = \% \text{ area with invasive CA} \)

Lymph Nodes

\(d_{met} = \text{size largest metastasis} \)

\[LN = \text{Number of Positive Nodes} \]

\[RCB = 1.4 (d_{prim} \times f_{inv})^{0.17} + [4 (d_{met} \times (1 - 0.75^{LN}))]^{0.17} \]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Hazard Ratio (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary tumor bed size ((d_{prim}))</td>
<td>1.24 (1.04-1.48)</td>
<td>0.02</td>
</tr>
<tr>
<td>Fraction of invasive cancer ((f_{inv}))</td>
<td>7.37 (2.16-25.1)</td>
<td>0.001</td>
</tr>
<tr>
<td>Number of positive lymph nodes ((LN))</td>
<td>1.11 (1.04-1.19)</td>
<td>0.002</td>
</tr>
<tr>
<td>Size of largest metastasis ((d_{met}))</td>
<td>1.17 (0.99-1.38)</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Symmans et al ASCO 2006 #536
Residual Cancer Burden Predicts Distant Relapse After T/FAC Chemotherapy

Symmans et al ASCO 2006 #536
Residual Cancer Burden (RCB) Classes Are Associated With DRFS After Chemotherapy

T/FAC (n = 241)

FAC alone (n = 141)
RCB Classes Stratify Residual Pathologic Stage After T/FAC Chemotherapy

Symmans et al ASCO 2006 #536
Effect of ER Status and Adjuvant Hormonal Therapy: Residual Cancer Burden After T/FAC Chemotherapy

Symmans et al ASCO 2006 #536
Conclusions

1. The definition of pCR should be limited to yT0 & yN0

2. The extent of residual disease clearly has prognostic relevance
 • Both the primary site and regional nodal basin
 • Consistent recommendations for pathologic assessment and reporting of residual disease are needed

3. AJCC Stage, “Miller-Payne”, and Residual Cancer Burden assessments improve the classification of residual disease
 • RCB-I identifies a group with prognosis similar to pCR
 • RCB-III provides a pathologic definition of resistance

4. Accurate and reliable classification of residual disease can assist us with
 • New trial designs for preoperative treatments
 • Development of diagnostic tests to select treatment based on predicted response