Impact of Age on the Biology of Breast Cancer

C. Benz, MD
Director, Cancer and Developmental Therapeutics Program
Buck Institute for Age Research

Adjunct Professor, University of California, San Francisco

NCI AYAO Biology Workshop
Bethesda, MD; June 9-10, 2009
Breast Cancer: a model disease of aging

• Aging USA population = more cancers
 \(\geq 65\text{y pop.} = 4\% \text{ in 1990, 12}\% \text{ in 1998, 20}\% \text{ in 2025} \)
 12\% pop. increase in 20y will bring a 60\% cancer increase

• Women are majority of elderly
 55\% of \(\geq 60\text{y} \); 65\% of \(\geq 80\text{y} \)
 Up to 80\% of breast cancers occur after age 50y

• Only \(\sim 6\% \) of breast cancers occur before age 40
 Up to 25\% of these associated with BRCA1/2 mutations

• Poor biological understanding of link with aging

 Altered cancer biology or host defenses?

Better Understanding = Better Treatment
Breast Cancer Epidemiology

❖ Age and geographic variations in incidence?
❖ Age-dependent outcomes and risk factors?
Breast Cancer Incidence Worldwide

- Correlates with development and affluence.
- Adjusted for age, but not ethnicity.
Breast Cancer Incidence Worldwide

- Correlates with development and affluence.
- Adjusted for age, but not ethnicity.
- *Generally increasing over past 30 years.*
Geographic Variations in Breast Cancer Incidence Occur Primarily in Women Over Age 40

Age-dependent Breast Cancer Incidence Rates

Younger Onset Incidence More Geographically Stable Than Older Onset Rates

- SEER database
- USA: 1992-1997

Invasive Breast Cancers 1997-2001

(Benz; Crit Rev Oncol/Hemat, 2008)

(Phipps, Clarke, Ereman; BCR, 2005)
Age-dependent Breast Cancer Incidence Rates

Younger Onset Breast Cancer: Less age-dependent ER/PR variability

"Clemmesen's Hook"

SEER database
USA: 1992-1997

(Benz; Crit Rev Oncol/Hemat, 2008)
Age-dependent Breast Cancer Incidence Rates

Younger Onset Breast Cancer: Less age-dependent histologic & ethnic variability

(Anderson et al.; CEBP, 2006)
Age-dependent Breast Cancer Incidence Rates

“Clemmesen’s Hook” = superimposition of two different incidence rate curves

Bimodal Age-density Distributions

Early onset breast cancer
Inherited or early-life initiating events?

Late onset breast cancer
Later-life promoting events?

(Anderson et al.; CEBP, 2006)
Age-dependent Breast Cancer Incidence Rates

Are There Early vs. Late Onset Differences in Breast Cancer Outcome?

Bimodal Age-density Distributions

Early onset breast cancer
Inherited or early-life initiating events?

Late onset breast cancer
Later-life promoting events?

(Anderson et al.; CEBP, 2006)
Early Onset Breast Cancer = Worse Outcome

Age cohorts selected from four public data sets and 784 clinically annotated breast tumor samples, heterogeneous with regard to stage, grade, ER status, and adjuvant therapy.

N = 211, > 65y

N = 200, < 45y

(HR 1.69; P = .013)

(Anders et al., J Clin Oncol 26: 3324-3330, 2008)
What Are the Known Risk Factors?

<table>
<thead>
<tr>
<th>"Not modifiable"</th>
<th>"Modifiable"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Parity/Age 1<sup>st</sup> live birth*</td>
</tr>
<tr>
<td>Age*</td>
<td>Mammographic density</td>
</tr>
<tr>
<td>Family history (1<sup>st</sup> degree relatives)*</td>
<td>Breastfeeding</td>
</tr>
<tr>
<td>Age at menarche*</td>
<td>Obesity/weight gain</td>
</tr>
<tr>
<td>Age at natural menopause</td>
<td>Hormone therapy (E+P)</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td>Radiation exposure</td>
</tr>
<tr>
<td>Prior benign biopsies*</td>
<td>Alcohol consumption</td>
</tr>
<tr>
<td></td>
<td>Physical activity</td>
</tr>
<tr>
<td></td>
<td>Diet</td>
</tr>
</tbody>
</table>

Incorporated into Breast Cancer Risk Assessment Tool (BCRAT)/Gail Model
What Are the Known Risk Factors?

"Not modifiable"
- Gender
- Age*
- Family history (1st degree relatives)*
- Age at menarche*
- Age at natural menopause
- Race/ethnicity
- Prior benign biopsies*

"Modifiable"
- Parity/Age 1st live birth*
- Mammographic density
- Breastfeeding
- Obesity/weight gain
- Hormone therapy (E+P)
- Radiation exposure
- Alcohol consumption
- Physical activity
- Diet

*Incorporated into Breast Cancer Risk Assessment Tool (BCRAT)/Gail Model

Strong associations with early onset breast cancer
What are the effects of aging on breast cancer biology, assessed by prognostic and predictive biomarkers?
Growth receptors ERBB2/HER2 & ER

Inverse relationships

(Benz; Crit Rev Oncol/Hemat, 2008)
Markers of invasiveness & metastatic potential

angiogenic factors: VEGF, bFGF
proteases: Cath. D, uPA, uPAR, PAI-1

No association with age after 40 y

Markers of proliferation & genetic instability

Ki-67/MIB-1

p53-positvity

(N = 802; r = -0.216, p < 0.0001)

(N = 823; r = -0.111, p = 0.0014)

Decline significantly with age after 40 y
Absent age-expression relationship does not preclude age-dependent prognostic effect

<table>
<thead>
<tr>
<th>N (uPA):</th>
<th>151</th>
<th>541</th>
<th>782</th>
<th>702</th>
<th>813</th>
</tr>
</thead>
<tbody>
<tr>
<td>age (y):</td>
<td>22-39.9</td>
<td>40-49.9</td>
<td>60-69.9</td>
<td>70-69.9</td>
<td>70-85</td>
</tr>
<tr>
<td>N (VEGF):</td>
<td>21</td>
<td>107</td>
<td>178</td>
<td>170</td>
<td>103</td>
</tr>
</tbody>
</table>

uPA & VEGF
prognostic only in early onset breast cancer

(Benz; Crit Rev Oncol/Hemat, 2008)
Biomarker results from retrospective analysis of ~4,000 breast cancer cases...

- Most show no association between age and level
 - PR, pS2, Bcl-2, VEGF, uPA, uPAR, PAI-1, Cath-D
- Some are strongly associated with age
 - Negative: grade, MI/Ki67, AI, p53, ErbB1&2
 - Positive: ER positivity & content

Quong et al., Age-dependent changes in breast cancer hormone receptors and oxidant stress markers. Breast Cancer Res. Treat., 2002

- Demonstrate that aging affects breast cancer biology and its clinical behavior.
- Since ER-positivity correlates inversely with other biomarkers, what is more important… Aging or ER status?
Among the more prevalent forms of ER+ breast cancer, are there age-associated biological differences?
Pilot Retrospective Outcome Analysis: *Impact of Aging*

ER-positive, $T_{1/2} N_0$, ductal BrCa: $n = 83$; Older (≥ 70 y) vs. Younger (< 45 y) cases

[A. Thor FFPE archive of 828 breast cancers; >16y follow-up; no adj. tx]
Pilot Retrospective Outcome Analysis: *Impact of Aging*

ER-positive, $T_{1/2} N_0$, ductal BrCa: $n = 83$; Older (≥ 70 y) vs. Younger (< 45 y) cases

[A. Thor FFPE archive of 828 breast cancers; >16y follow-up; no adj. tx]

Even for ER+ breast cancers, age is a significant breast cancer risk factor

(Benz; Crit Rev Oncol/Hemat, 2008)
Study Design: ER-positive, early-stage (T1/2, N0) ductal breast cancers

• Cohort comparison: YOUNGER (≤ age 45) vs. OLDER (≥ age 70) age-at-diagnosis Cauc. cases
• Cryobanked tumor samples for DNA and RNA (+ protein fractions); sample sources from:
 -- UCSF/BOP; n = 83 (Y = 21, O = 62) for DNA, 68 for RNA; 54 with RFS (Y<<O; p < 0.04)
 -- NCI-Bari, Italy; n = 70 (Y = 27, O = 43) for DNA, 30 for RNA; no RFS data
 [from larger collective of ER+ & ER- cases with matching blood sample]

Specific Aims:

• Identify genomic differences between Older and Younger ER+ cohorts using DNA samples.
 - Genome copy number phenotypes (2.5 K BAC CGH arrays)
 - p53 mutations in DNA core (microsequence exons 5-8)

• Identify gene expression differences between Older and Younger ER+ cohorts using RNA samples.
 - Expression array signatures & phenotypes (Affy arrays)

(Yau and Benz, BCR, 2007)
Array CGH Analysis of Breast Cancers

#19, Y, ER+/PR+

Genome Order

Genomic Locus Gain/Loss Frequency
No Age Associated Differences in Genomic Locus Aberration Frequencies
Unsupervised Hierarchical Clustering of 70 ER+ IDC Shows no Age Association with Subgroups
Copy Number Transitions
Old = Young

p = 0.64
Number of Amplifications: Old ~ Young

(ERBB2, MYC, CCND1, MDM2, EGFR, AIB1, TOPO2, ZNF217, etc.)

ERBB2 amplifications:

Young = 11%
Old = 9%

p = 0.28
Age, ER status & p53 Mutations?

~ 20% p53mut frequency reported among all breast cancers

~ 90% missense mutations, >90% in DNA-binding core (exons 5-8, aa 126-306)

<table>
<thead>
<tr>
<th></th>
<th>ER-/p53wt</th>
<th>ER+/p53wt</th>
<th>ER-/p53mut</th>
<th>ER+/p53mut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early onset (< 45 y) n=135</td>
<td>49 (36.3%)</td>
<td>64 (47.4%)</td>
<td>14 (10.4%)</td>
<td>8 (5.9%)</td>
</tr>
<tr>
<td>Late onset (≥ 70 y) n=154</td>
<td>25 (16.2%)</td>
<td>107 (69.5%)</td>
<td>12 (7.8%)</td>
<td>10 (6.5%)</td>
</tr>
</tbody>
</table>

No age link with p53mut when ER status considered

P = 0.004, Fisher Exact
Microarrays Identify Multiple Breast Cancer Subsets

(Sørlie et al., PNAS 98: 10869-10874, 2001)

78 breast cancers (+7 benign breast samples)
clustered by 456 genes from ~8K array

<table>
<thead>
<tr>
<th>ER+, type A</th>
<th>ER+, type B</th>
</tr>
</thead>
<tbody>
<tr>
<td>82%</td>
<td>71%</td>
</tr>
<tr>
<td>67%</td>
<td>33%</td>
</tr>
<tr>
<td>13%</td>
<td>67%</td>
</tr>
</tbody>
</table>

%mutated p53

Overall Survival (Mo.)
Relapse-free Survival (Mo.)

N = 49 breast cancer patients (Stage II/III, uniform adj. treatment)
Microarrays Identify Several ER+ Br Ca Subsets

(Sørlie et al., PNAS 98: 10869-10874, 2001)

78 breast cancers (+7 benign breast samples)
clustered by 456 genes from ~8K array

82% 71% 33% 67% 13%
%mutated p53

ER+, type A
ER+, type B
ER+, type A
ER+, type B

N = 49 breast cancer patients (Stage II/III, uniform adj. treatment)
Microarray Unsupervised Clustering of ER+ BrCa

N = 102 RNA samples from O + Y age cohorts of node-neg ER-pos ductal BrCa
Unsupervised Analysis of ER+ Ductal BrCa

Group 1A: older patients (68%)
- 89% PR+

Group 1B: older patients (55%)
- 74% PR+

Group 2: younger patients (77%)
- 56% PR+

Group 3: younger patients (65%)
- 83% PR+

p<0.05 for age cohort difference between Group 1A/B & 2
Unsupervised ER+ Clusters: *Not as prognostic as PR status*

Adjuvant tamoxifen use (>60%) balanced in all comparison groups

$p = 0.09$

$p = 0.02$
Supervised Analysis: **Differentially expressed genes**

59 unique genes, including ER, are significantly up-regulated in the Older Age cohort (FDR, p<0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Name</th>
<th>Average Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPM1</td>
<td>nuclear matrix protein</td>
<td>2.16771230</td>
</tr>
<tr>
<td>CD45RB1</td>
<td>homeobox B6</td>
<td>2.42707016</td>
</tr>
<tr>
<td>TMEM53</td>
<td>transmembrane channel-like 6</td>
<td>2.34985049</td>
</tr>
<tr>
<td>GUS</td>
<td>mucin 1, transmembrane</td>
<td>2.15628763</td>
</tr>
<tr>
<td>STS</td>
<td>alpha-1-antitrypsin-related protein</td>
<td>2.10171060</td>
</tr>
<tr>
<td>A2M</td>
<td>alpha-2-macroglobulin</td>
<td>1.04257056</td>
</tr>
<tr>
<td>PYG</td>
<td>phosphoglycoprotein, krukenkrooss</td>
<td>1.03662056</td>
</tr>
<tr>
<td>KAGAA1022</td>
<td>KAGAA1022 protein</td>
<td>1.02134162</td>
</tr>
<tr>
<td>TNFRSF10</td>
<td>tumor necrosis factor (ligand)</td>
<td>1.076381061</td>
</tr>
<tr>
<td>GSTM</td>
<td>glycine amidinotransferase (GAMA)</td>
<td>1.07761938</td>
</tr>
<tr>
<td>RNU54</td>
<td>ribonuclease, Rnase A family, 4</td>
<td>1.043199366</td>
</tr>
<tr>
<td>GLC9</td>
<td>glutathione (thioredoxin)</td>
<td>1.07419416</td>
</tr>
<tr>
<td>FLN2152</td>
<td>hypothetical protein FLN2152</td>
<td>1.073079702</td>
</tr>
<tr>
<td>ERB</td>
<td>estrogen receptor</td>
<td>1.07030226</td>
</tr>
<tr>
<td>ENTPD6</td>
<td>endothelial protein disulfide</td>
<td>1.033886431</td>
</tr>
<tr>
<td>DOSG6</td>
<td>dermatitis sulfate proteoglycan 3</td>
<td>1.069834665</td>
</tr>
<tr>
<td>CDS4</td>
<td>CDS4, interacting transcript</td>
<td>1.034421394</td>
</tr>
<tr>
<td>SH3D1</td>
<td>SH3 domain binding glutamine acid</td>
<td>1.081139451</td>
</tr>
<tr>
<td>TRR11</td>
<td>retinoic acid receptor, type 1</td>
<td>1.080906910</td>
</tr>
<tr>
<td>SSX1</td>
<td>SSX1 and SSX domain containing 1</td>
<td>1.08193964</td>
</tr>
<tr>
<td>ANG</td>
<td>angiotensin, riboside, ribase A family, 6</td>
<td>1.05147141</td>
</tr>
<tr>
<td>H3F3D5</td>
<td>homeobox D5</td>
<td>1.059547306</td>
</tr>
<tr>
<td>MARK1</td>
<td>MARK1 domain containing 1</td>
<td>1.06397581</td>
</tr>
<tr>
<td>IGFAP2</td>
<td>IGF-A protein activating protein</td>
<td>1.03686156</td>
</tr>
<tr>
<td>ARHGEF20</td>
<td>Rho GTPase activating protein (GAP)</td>
<td>1.074930184</td>
</tr>
<tr>
<td>FAN</td>
<td>farnesyltransferase</td>
<td>1.053779373</td>
</tr>
<tr>
<td>WWX4</td>
<td>WW domain containing oxidoreductase</td>
<td>1.075898223</td>
</tr>
<tr>
<td>COBL1</td>
<td>COBL like 1</td>
<td>1.073895022</td>
</tr>
<tr>
<td>C20orf58</td>
<td>chromosome 20 open reading frame 35</td>
<td>1.05011981</td>
</tr>
<tr>
<td>EMA21</td>
<td>enolase-A1</td>
<td>1.056894611</td>
</tr>
<tr>
<td>C24265A10</td>
<td>catenin (cadherin-like, transmembrane)</td>
<td>1.054815024</td>
</tr>
<tr>
<td>GL2EC3A</td>
<td>type-3 lectin domain family, member A</td>
<td>1.02835474</td>
</tr>
<tr>
<td>P8</td>
<td>P8 protein (candidate of motility 1)</td>
<td>1.02491979</td>
</tr>
<tr>
<td>D0S2141</td>
<td>D0S2141, 21qter</td>
<td>1.052202335</td>
</tr>
<tr>
<td>CSF2R1</td>
<td>chromosome 21 open reading frame 25</td>
<td>1.051787935</td>
</tr>
<tr>
<td>SEF6</td>
<td>sef protein</td>
<td>1.051858507</td>
</tr>
<tr>
<td>RHOB</td>
<td>rac homolog gene family, member B</td>
<td>1.05172247</td>
</tr>
<tr>
<td>SODD</td>
<td>store-25-deiodinase (ERG), delta-5-deiodinase, fungal-like</td>
<td>1.051134372</td>
</tr>
<tr>
<td>F11A1</td>
<td>F11A1, plasminogen activator</td>
<td>1.043971074</td>
</tr>
<tr>
<td>TAPBP</td>
<td>TAP binding protein-like</td>
<td>1.049399935</td>
</tr>
<tr>
<td>PPP1R2C2</td>
<td>PPP1R interacting protein, binding 2 (protein beta 2)</td>
<td>1.051793099</td>
</tr>
<tr>
<td>CCDC28A</td>
<td>coiled-coil domain containing 28A</td>
<td>1.04926235</td>
</tr>
<tr>
<td>CRM</td>
<td>carboxy-steroid M</td>
<td>1.046262865</td>
</tr>
<tr>
<td>CALM3</td>
<td>calcineurin 3 (phosphatase kinase, delta)</td>
<td>1.045830549</td>
</tr>
<tr>
<td>SLC25A12</td>
<td>solute carrier family 25 (mitochondrial carrier, Arai, member 12)</td>
<td>1.04571349</td>
</tr>
<tr>
<td>CHL1</td>
<td>chlomerin</td>
<td>1.043699772</td>
</tr>
<tr>
<td>MARCO</td>
<td>membrane-associated ring finger (C9H4C4)</td>
<td>1.0434302973</td>
</tr>
<tr>
<td>HOXB8</td>
<td>homeobox B8</td>
<td>1.047307321</td>
</tr>
<tr>
<td>FLJ09266</td>
<td>FLJ09266 protein</td>
<td>1.045940203</td>
</tr>
<tr>
<td>PEO2</td>
<td>peroxisomal biogenesis factor 3</td>
<td>1.04788318</td>
</tr>
<tr>
<td>SLC2A8</td>
<td>solute carrier family 12 (lysosomal chloride transporter), member B</td>
<td>1.04515292</td>
</tr>
<tr>
<td>SLC34A9</td>
<td>solute carrier family 7 (amino acid transporter, y+ system), member 8</td>
<td>1.03803564</td>
</tr>
<tr>
<td>DBI</td>
<td>diacylglycerol binding inhibitor</td>
<td>1.033872935</td>
</tr>
<tr>
<td>PRBPL</td>
<td>prolyl endopeptidase-like 4</td>
<td>1.037664793</td>
</tr>
<tr>
<td>P4AT</td>
<td>phosphatidylinositol glycerol kinase</td>
<td>1.036247497</td>
</tr>
<tr>
<td>LOC337145</td>
<td>promethin</td>
<td>1.039223222</td>
</tr>
<tr>
<td>RANBP2</td>
<td>RAN binding protein 2</td>
<td>1.037316173</td>
</tr>
<tr>
<td>TGOCD2</td>
<td>tango-2 homolog protein 2</td>
<td>1.031864338</td>
</tr>
</tbody>
</table>

Note: Highlighted in red are genes with implied or established roles in cancer

(From Yau and Benz, BCR, 2007)
Predictive Analysis: *Is there an ER+ age signature?*

A. ER+ test set:

<table>
<thead>
<tr>
<th></th>
<th>Test Set (68 tumors)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>old</td>
</tr>
</tbody>
</table>

B. ER+ validation sets:

<table>
<thead>
<tr>
<th>Validation Set</th>
<th>accuracy</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(35 cases)</td>
<td>80%</td>
<td>0.0003</td>
</tr>
<tr>
<td>(30 cases)</td>
<td>83%</td>
<td>0.0017</td>
</tr>
<tr>
<td>(64 cases)</td>
<td>84%</td>
<td>1.67E-7</td>
</tr>
</tbody>
</table>

C. Two genes correlating (-,+) most strongly with age:

![Gene expression graphs](Yau and Benz, BCR, 2007)
Age & ER+ Gene Expression Profiles

Unsupervised Analysis

- ER+ breast cancers are heterogeneous (4 subtypes)
- PR status not reflected in ER+ transcriptional subtypes
- Subset of early onset cases have worse prognosis (RFS).

Supervised and Predictive Analyses

- Early onset ER+ breast cancer associated with:
 - reduced expression of ER and some tumor suppressors (ARHGDIB, SASHI), development regulators (HOXB6/B7), & apoptosis inducer (TNFSF10)
 - increased expression of growth factor (AREG) & receptor (FGFR1), ER-inducible growth regulator (GREB1), mitotic factors (CDC14A, STK6), & serine proteases (PRSS1/2)

- Early onset ER+ cases enriched in poor prognostic signatures:
 - proliferation
 - oxidative stress
Oxidative Stress & Early Onset ER+ Breast Cancer

- Oxidative stress signature (Ox-E/ER) linked to poor-outcome ER+ breast cancers (Yau et al., BCR 2008)
- Early onset ER+ breast cancers enriched with both proliferation and Ox-E/ER gene signatures
- Gene pathways shared by early onset and Ox-E/ER enriched tumors share upstream TNF & TGFβ nodes
- At least 75% of signature genes regulated by TNF & TGFβ contain NFκB and/or AP-1 promoter elements

Pathway Comparisons Between ER+ Age Signature and Ox-E/ER Signature

From ER+ age signature (Yau et al., BCR 9:R59, 2007):

From Ox-E/ER signature (Yau & Benz, BCR 10:R61, 2008):
Signaling Pathways Shared by Oxidatively Stressed and Early Onset ER+ Breast Cancers

Opportunities for Therapeutic Intervention?

Breast Cancer & Aging: Questions

Do ER-breast cancers show age-associated outcome and biology differences?
Maybe not...

Metastasis-free Survival

Pooled outcome analyses comparing ER+ vs. ER- untreated N₀ cases from age-annotated data sets (Y ≤ 39 years; O ≥ 40 years)

Conclusions

- Breast cancer is a heterogeneous disease with early and late onset forms, even within known clinical subtypes (e.g. ER+ vs. ER-).
- Inverse age relationship between ER and biomarkers of breast cancer growth (e.g. Ki-67, ERBB2/HER2) and genomic stability (nuclear grade, p53).
- Among sporadic ER+ breast cancers, age has little effect on cancer genome but predictably alters breast cancer gene expression (epigenome).
- Sporadic, early onset ER+ breast cancer is clinically and biologically more aggressive, with features indicating enhanced NFκB and AP-1 activated gene programs that correlate with endocrine resistance.
• Gary Scott, PhD
• David Britton PhD
• Christina Yau, BS
• Corina Marx, PhD
• Christian Atsiriku, PhD
• Yamei Zhou, PhD
• Crystal Berger, BS
• Chris Benz, MD

& Collaborators
• UCSF Breast SPORE
• NCI-Bari, Italy
• STB, Basel, Switz.