Statistical Challenges in the Study of Adolescent and Young Adult Cancers

Lisa M. McShane, Ph.D.

Biometric Research Branch Division of Cancer Treatment and Diagnosis National Cancer Institute

June 10, 2009

Challenges

Understand the biology
Exploit the biology to hypothesize better prevention, detection, and treatment strategies*
Clinical trials to test hypotheses under the constraints of rare diseases

*This talk will focus on biology and treatment strategies.

Understanding the biology: Molecular profiling

DNA – mutations, polymorphisms, and copy number alterations (e.g., SNP chips)
Cytogenetics
RNA - Gene expression microarrays, multiplex RT-PCR
Protein – IHC marker panels, other proteomic assays

Biological Subgroups in Adult Cancers

Alizadeh et al*., Nature*, 2000 (lymphoma)

Perou, *Nature* 2001; Sørlie, *PNAS* 2001; Sørlie, *PNAS* 2003 (breast cancer)

Molecular Profiles of AYA Cancers

One or more biological subgroups?

Mapping from child and/or adult subgroups?

- Similar to adult subgroups, but shifted toward over-representation of aggressive subtypes?
- Completely different biology?
- Association of "natural" biological subgroups in AYA with age?
 - Continuum?
 - Natural breakpoints?

What could the biological subgroups tell us?

 Etiology Prognostic • Predictive (therapy selection) Interesting biology may or may not be prognostic or predictive. Maybe it will suggest new targets for therapy.

Prognostic Marker*

Measurement associated with clinical outcome in absence of therapy or with application of standard therapy that all patients are likely to receive.

Examples

- Pathologic stage
- Histologic grade

Importance

- Highly favorable group might avoid treatment
- Might suggest aggressiveness of treatment
- Might suggest more intensive monitoring
- Might suggest target for therapy

*Think of subgroup membership as a "marker".

Prognostic Marker Issues

 Correlation with outcome not necessarily sufficient to impact clinical decisions

Good prognosis group may forego additional therapy

Is this prognostic information helpful?

Predictive Marker*

Measurement associated with response or lack of response to a particular therapy.

Example

 ER/PgR for endocrine therapy benefit in breast cancer

Statistical wisdom

Test for treatment by marker interaction

*Think of subgroup membership as a "marker".

Predictive Marker

What is a treatment by marker interaction, and are they all created equal?

Qualitative interaction

- New drug better for M+ (h.r. = 0.44)
- Control drug better for M-(h.r. = 1.31)
- Interaction = 0.44/1.31 = 0.33

Quantitative interaction

- New drug better for M+ (h.r. = 0.44)
- New drug better for M- (h.r. = 0.76)
- Interaction = 0.44/0.76 = 0.58

Clinical Value of Clusters?

Biologically interesting
Prognostic for outcome
Select therapy (predictive)?

(Perou, Nature 2001; Sørlie, PNAS 2001; Sørlie, PNAS 2003)

Analyzing Molecular Profiles

Unsupervised analyses

- Search for subgroups ignoring phenotype or outcome information
- Examples: Clustering algorithms such as hierarchical clustering, K-means, SOMs
- Supervised analyses
 - Use phenotype or outcome information to directly derive distinguishing features or classifiers
 - Feature identification: multiple testing issues
 - Classifier building: discriminant analysis, nearest neighbor, SVM, neural nets
 - Not necessarily biologically homogeneous within a phenotype or outcome group

Strategy

Search for biological subtypes

- If subtype exists in pediatric or adult populations, examine existing information relating biology to treatment success
- Conduct efficient trials to find better treatments
 - Phase I dose & toxicity assessment
 - Phase II single-arm vs. randomized
 - Phase III stratification, enrichment, factorial designs & others
 - Add-ons to pediatric and/or adult trials
- Meta-analyses may be required

Phase | Considerations

Pharmacokinetic/pharmacodynamic differences between AYA and pediatric or adult patients may suggest dose/schedule alterations Few co-morbidities and other medications Greater impact and/or susceptibility for long-term & delayed toxicity

Phase II Considerations

Single arm trials

- May require less than half sample size of some randomized phase II trials with comparable type I (α) and type II (β) error
- Historical control data required
- Impact of selection biases unintended (e.g., drift), or intended (e.g., targeted subpopulation)
- Benchmark of RR may be more stable historically and less subject to evaluation bias than endpoint such as PFS

Phase II Considerations (cont.)

Randomized phase II trials

- Guard against selection bias
- Don't require availability of historical controls
- May require more than twice the sample size of single arm phase II trial with comparable type I and type II error

(Reference: Rubinstein et al., JCO 2005)

Phase II Considerations (cont.)
 Randomized phase II trials (cont.)
 Examples of randomized designs

 Selection design

- Appropriate for prioritizing between two experimental regimens when no a priori preference (e.g., based on cost, toxicity)
- Not appropriate for comparing experimental agent to standard treatment control arm (50% chance of choosing experimental arm if truly no difference)
- Possible neither experimental regimen is effective

Phase II Considerations (cont.)
Randomized phase II trials (cont.)
Examples of randomized designs (cont.)

- Screening design
 - Compare experimental regimen to standard treatment control arm
 - Economize on sample size by using larger than usual type I and type II errors, and targeting larger effect size (e.g., $\alpha = \beta = 0.20$, PFS hazard ratio = 1.5 or RR difference = 20%)
- Other designs
 - Randomized phase II (2 experimental regimens) plus reference control arm
 - Phase II/III

Phase III Considerations

Stratified design

- Control for variability added by prognostic subgroups
- Possibly conduct different trials in different prognostic groups

Phase III Considerations

Enrichment design

- Expect benefit only in "+" subgroup
- Avoid dilution of treatment effect by "-" group

Efficiency (relative to all-comers design) depends

Proportion of patients in targeted "+" subgroup
Treatment effect (relative to control) in excluded patients

No information about treatment benefit in "-"

subgroup

Phase III Considerations (cont.) Factorial design • 2×2 design: Test treatments (A, B) simultaneously Patients serve "double duty" Median OS (yrs) Median OS (yrs) Median OS (yrs) **A-A**+ **A**+ A - A +Α-**B-** 4 6 8 4 B- 4 8 B-B+ 6 12 12 B+ 6 12 **B+ 6** Quantitative Qualitative No interaction (additive) interaction interaction

Problematic interpretation in presence of interactions

Phase III Considerations (cont.)

- Other designs e.g., adaptive, Bayesian
 - Extensive planning
 - Intensive monitoring
 - Usually require short term endpoints
 - Required sample size may or may not be smaller
 - Receive a lot of hype

Meta-analyses

- Pool across studies to evaluate an effect of interest, e.g., treatment effect, prognostic effect
- Overcome inadequate samples size in individual studies or because interest is in subgroups

Understand heterogeneity in results
 Understand generalizability of result
 Draw conclusion, practice guideline

Meta-analysis Conduct

- Focused, clinically meaningful question
- Identify relevant, high quality studies
- Search broadly to avoid publication bias
- Two main approaches
 - Trial summary data (effect estimates with variance estimates)
 - Individual patient level data

Meta-analysis Methods

Test for between-study heterogeneity
 Weighted average of trial-specific effects

- Test average effect against null value (e.g., no treatment effect)
 - Random effect model (trials effects have a distribution around some mean value)
 - Fixed effect model (no between-trial heterogeneity)

Summary Recommendations

- Invest in biology studies
 Leverage knowledge already acquired in pediatric and adult studies regarding biological variability and treatment effects in AYA-overlapping subgroups
- Consider efficient trial design options, but understand the trade-offs
- Consider possibility of meta-analyses to examine treatment or prognostic questions
- Coordinate expanded collection of specimens with standardized pathologic and clinical data