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Patient- vs. in vitro-based predictive models

] Predictive models of therapeutic response have been
made using previously treated patient data, but they...

» Are very costly & take 5+ yrs for each regimen

» Can predict only for the exact combination therapy used
In the previous human patient studies and trials

- No individual compound response predictability for better
therapeutic options and/or novel combinations for
heterogeneous BC tumors

- If works, in vitro-based predictive models can

» Provide predictions of heterogeneous BC tumors to
iIndividual compounds - True personalized therapy

» Be efficiently made for many drugs and their
combinations, e.g. >100 doublet, or even triplet
combinations among ~15 therapeutic compounds
currently used for breast cancer




Why multi-gene expression predictors work?

- Tumor Heterogeneity: Often a large number of
alternative genes and networks are relevant to cancer
patients’ prognosis and therapeutic responses

- Individual gene information is frequently variable and noisy

J Tumor Biology: Need to understand functional
mechanisms of these gene networks
—> e.g. epigenetics & environmental interactions
(Books in library don’t make actions, but books we take out,
read, and interpret make actions!)

] Technical Advance: Unbiased genome-wide
functional survey with accurate quantification

- Need to summarize their consistent, consensus network
gene actions, avoiding statistical over-fitting!




COXEN: Genomic Based Personalized Chemotherapeutics
“*Co-eXpression“ExtrapolatioN” (WWW.COXEN.ORG)

Human Tumor Expression
Profiling

Biomarker networks &
Statistical Bioinformatics

Expression Profiling

Personalized
Chemotherapeutic
Response Prediction
On Human Cancer

-Lee et al. (PNAS, 2007; Predicting the chemosensitivity of human
cancers and its application to drug discovery)

- Havaleshko et al. (Mol Cancer Ther 2007; Prediction of drug combination
chemosensitivity in human bladder cancer)




Initial proof-of-principle in vitro-based

Gene Expression Model (GEM) applications

J Chemosensitivty prediction of paclitaxel
and cisplatin on bladder 40 cell lines (BLA-
40)

1 Novel anticancer drug discovery on BLA-
40 and Validation

1 Chemotherapeutic response prediction
of breast cancer docetaxel (DOC-24)
and tamoxifen (TAM-60) trials




Six COXEN Steps for Bladder Cancer Prediction

NCI-60 cancer cell lines BLA-40 human bladder cancer cell lines
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Hierarchical clustering before or after COXEN
biomarker selection
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Can we predict patient treatment outcome in breast

cancer clinical trials?

- Chang et al (Lancet, 2003)
- Ma et al (Cancer Cell, 2004)

Drug activity profiles
of Docetaxel and Tamoxifen
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In vitro model prediction on single-compound

breast cancer clinical trials

Primary tumor response to Survival following
neoadjuvant doxcetaxel (DOC-24) adjuvant tamoxifen (TAM-60)
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Consistent prediction on combination

chemotherapies for diverse patient sets?

Wasn't the prediction useful only for each patient
set?

Are we ready to use unaltered in vitro-based
models to forecast & guide both

clinical response and survival

of diverse patient sets treated by combination
chemotherapy?
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COXEN Prediction of Response to

Combination Chemotherapy in Paired Trials

Cancer Type Study Name

Agent or Combination

Score probability

Score probability

Responders Non-Responders p-value
(mean+/- 2 Std) (mean+/- 2 Std)
Responder vs. Non-Responder
Bladder BL-MVAC-Jap Methotrexate 0.625 +/- 0.071 0.371 +/- 0.071 <0.001
Vinblastine 0.594 +/- 0.071 0.358 +/- 0.079 0.002
Adriamycin 0.552 +/- 0.078 0.402 +/- 0.090 0.049
Cisplatin 0.570 +/- 0.076 0.364 +/- 0.080 0.007
AC 0.947 +/- 0.022 0.794 +/- 0.054 0.001
BL-MVAC-Den Methotrexate 0.534 +/- 0.122 0.506 +/- 0.168 0.769
Vinblastine 0.602 +/- 0.192 0.490 +/- 0.166 0.764
Adriamycin 0.756 +/- 0.121 0.441 +/- 0.154 0.071
Cisplatin 0.783 +/- 0.075 0.442 +/- 0.148 0.013
AC 0.969 +/- 0.003 0.643 +/- 0.140 0.038
Ovarian OV-Plat Carboplatin 0.715 +/- 0.074 0.563 +/- 0.141 0.034
Taxol 0.429 +/- 0.087 0.223 +/- 0.114 0.003
CT 0.826 +/- 0.061 0.638 +/- 0.132 0.007
Breast BR-TFAC -MDA Taxol 0.568 +/- 0.130 0.345 +/- 0.072 0.002
5-FU 0.549 +/- 0.119 0.472 +/- 0.077 0.146
( Hess-133) Adriamycin 0.326 +/- 0.135 0.164 +/- 0.061 0.019
Cyclophosphamide 0.340 +/- 0.138 0.218 +/- 0.071 0.064
FAC 0.721 +/- 0.116 0.576 +/- 0.072 0.021
BR-GED Gemcitabine 0.219 +/- 0.046 0.154 +/- 0.033 0.014
Epirubicin 0.430 +/- 0.113 0.324 +/- 0.057 0.055
Docetaxel 0.804 +/- 0.076 0.726 +/- 0.042 0.044
GED 0.919 +/- 0.034 0.859 +/- 0.023 0.003
Survivor vs. Deceased
Ovarian OV-CT Carboplatin 0.498 +/- 0.253 0.202 +/- 0.212 0.047*
Taxol 0.397 +/- 0.227 0.114 +/- 0.136 0.025
CT 0.721 +/- 0.213 0.310 +/- 0.224 0.008
Breast BR-FAC-Duke 5-FU 0.514 +/- 0.112 0.301 +/- 0.155 0.024
Adriamycin 0.211 +/- 0.107 0.036 +/- 0.042 0.002
Cyclophosphamide 0.263 +/- 0.118 0.114 +/- 0.124 0.052
FAC 0.611 +/- 0.120 0.392 +/- 0.177 0.033
12



COXEN Prediction of Overall Survival to

Combination Chemotherapy in

BR-FAC
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Was the prediction truly blinded & prospective?

Question: Will this performance be realized in a
completely-blinded prospective setting in practice?
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Three multi-gene prediction modeling &

Blinded prospective application

Model Development ----------------
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Prediction by three multi-gene modeling strategies

Responders Non-Responders
Study Name -
y Single Agent or GEM Scores GEM Score
(patient number) Combination (mean+/-95%  (mean+/-95%  p-valuet
Cl) Cl)
Taxol 0.531+/-0.225 0.289+/-0.079 0.045*
In vitro 5-FU 0.447+/-0.229 0.426+/-0.074 0.848
COXEN Adriamycin 0.168+/-0.170 0.235+/-0.078 0.459
GEM Cyclophosphamide 0.146+/-0.176 0.160+/-0.061 0.879
TFACH 0.659+/-0.192 0.601+/-0.075 0.562
Human GEM TFACH 0.480+/-0.158 0.234+/-0.057 0.006**
Taxol 0.449+/-0.172 0.221+/-0.048 0.015*
i 5-FU 0.262+/-0.057 0.254+/-0.023 0.787
In vivo
Adriamycin 0.365+/-0.098 0.239+/-0.037 0.019*
COXEN
Cyclophosphamide 0.366+/-0.135 0.251+/-0.049 0.106
GEM
TA 0.613+/-0.155 0.380+/-0.055 0.002**
TFACH 0.755+/-0.133 0.595+/-0.052 0.028*
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Concordant Prediction Performance of three
modeling strategies
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Conclusion

1 Highly encouraging possibility in efficiently developing in
vitro-based prediction models for therapeutic response
» Concordant prediction of unaltered in vitro-based models on
geographically and ethnically diverse patient sets
» Validated by a completely-blinded prospective prediction

 Are in vitro-based models ready for clinical use?

» NOT YET represent validation of a pre-defined predictor with a
pre-set threshold to call a case + (responder) or — (non-
responder)

» rather shows proof-of-a-concept, illustrating the in vitro-based
models are truly informative (from each ROC curve) in stratifying
patients’ responses

- A standard diagnosis assay platform and procedure should
be defined for routine clinical practice, from which a fixed
cutoff value can be defined for a target patient population

19
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Conclusion

J in vitro-based models are limited for the compounds
that show no relevant drug activities in vitro, e.g. anti-
angiogenesis compounds

] Validation and validation for many predictive in vitro-
based models for translation to clinical practice!

» Validate on historical FFPE patient samples in ethnically,
geographically-diverse clinical settings based on
standardized diagnosis assay platforms and procedures

» Prospective clinical trials with, e.g. standard combination

chemotherapy arm vs. genomic-guided arms among current
equivalent therapeutic options

] Need to establish, maintain, & integrate infrastructure:

» 1) genomics/proteomics/other molecular databases, 2)
patient sample archives, 3) clinical information database

- Personalize therapies for better cure of breast cancer
patients in a near sight!! 20
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