Are *in vitro*-based predictive signatures ready for clinical use in breast cancer?

Jae K. Lee, PhD
Division of Biostatistics and Epidemiology
University of Virginia

February 24, 2009

The 2nd TBCI Correlative Sciences Workshop
Collaborators

- **Lee** bioinformatics/biostatistics
 - Group at UVA
 - Feng Cheng, PhD
 - Sang-Hoon Cho, PhD
 - Young-chul Kim, PhD
 - Annamalai Muthai, MS
 - Paul Williams, PhD

- **UVA Theodorescu** Clinical Lab
 - Dima Havaleshko, MD
 - Kihyuck Moon, MD
 - Hyeon Jung, MD

- **UVA Computer Science**
 - Andrew Grimshaw, PhD
 - John Kaporvich, PhD

- **UVA Clinical Oncology Group**
 - Chris Thomas, MD

- **UVA Pathology**
 - Chris Moskaluk, MD

- **MD Anderson**
 - Charles Coutant, PhD
 - Yuan Qi, PhD
 - W Fraser Symmans, MD
 - Keith Baggerly, PhD
 - Lajos Pusztai, MD

- **UT San Antonio HSC**
 - Rong Li, PhD
 - Anand Karnad, MD
Predictive models of therapeutic response have been made using previously treated patient data, but they…

- Are very costly & take 5+ yrs for each regimen
- Can predict only for the exact combination therapy used in the previous human patient studies and trials
- No individual compound response predictability for better therapeutic options and/or novel combinations for heterogeneous BC tumors

If works, *in vitro*-based predictive models can

- Provide predictions of heterogeneous BC tumors to individual compounds → True personalized therapy
- Be efficiently made for many drugs and their combinations, e.g. >100 doublet, or even triplet combinations among ~15 therapeutic compounds currently used for breast cancer
Why multi-gene expression predictors work?

- **Tumor Heterogeneity**: Often a large number of alternative genes and networks are relevant to cancer patients’ prognosis and therapeutic responses
 → Individual gene information is frequently variable and noisy

- **Tumor Biology**: Need to understand functional mechanisms of these gene networks
 → e.g. epigenetics & environmental interactions
 (Books in library don’t make actions, but books we take out, read, and interpret make actions!)

- **Technical Advance**: Unbiased genome-wide functional survey with accurate quantification
 → Need to summarize their consistent, consensus network gene actions, avoiding statistical over-fitting!
COXEN: Genomic Based Personalized Chemotherapeutics

“Co-eXpression ExtrapolatioN” (WWW.COXEN.ORG)

NCI60 Panel

Drug Screen (DTP, NCI)

Expression Profiling

Biomarker networks & Statistical Bioinformatics

COXEN

Human Tumor Expression Profiling

Personalized Chemotherapeutic Response Prediction On Human Cancer

- Lee et al. (PNAS, 2007; Predicting the chemosensitivity of human cancers and its application to drug discovery)
- Havaleshko et al. (Mol Cancer Ther 2007; Prediction of drug combination chemosensitivity in human bladder cancer)
Initial proof-of-principle *in vitro*-based Gene Expression Model (GEM) applications

- Chemosensitivity prediction of paclitaxel and cisplatin on bladder 40 cell lines (BLA-40)
- Novel anticancer drug discovery on BLA-40 and Validation
- Chemotherapeutic response prediction of breast cancer docetaxel (DOC-24) and tamoxifen (TAM-60) trials
Six COXEN Steps for Bladder Cancer Prediction

Step 1: NCI-60 cancer cell lines
- Drug activity profiles of cisplatin and paclitaxel in NCI’s Public Drug Database

Step 2: mRNA expression profiles (Hu133A&B)

Step 3: Drug sensitivity predictor probes (191 probes for cisplatin; 105 for paclitaxel)

Step 4: BLA-40 human bladder cancer cell lines
- mRNA Expression profiles (Hu133A)

Step 5: Drug sensitivity probes “co-expression extrapolated” between the NCI-60 and BLA-40
(18 probes for cisplatin; 13 for paclitaxel - Table S1)

Step 6: MiPP prediction model development
- Training set (internal cross-validation)
- Test set (external cross-validation)

- No Bladder cancer in NCI-60
- Completely prospective prediction!

Independent Validation of COXEN predictions on BLA-40
- COXEN Scores of cisplatin and paclitaxel activity in the BLA-40
- Independent comparison
- In vitro evaluation of cisplatin and paclitaxel activity in BLA-40 cells

NCI-60 Microarray Profiling (HG133A&B), collaboration with John Weinstein, NCI & Eric Kaldjian, Gene Logic

BLA-40 Array & Validation
Theodorescu Lab, UVA
Hierarchical clustering before or after COXEN biomarker selection
Can we predict patient treatment outcome in *breast cancer* clinical trials?

- Chang et al (Lancet, 2003)
- Ma et al (Cancer Cell, 2004)

NCI-60 cancer cell lines

Drug activity profiles of Docetaxel and Tamoxifen

Gene Microarray

Validation of COXEN predictions in Breast Cancer patients

- Treatment outcome indices:
 - DOC-24: tumor residual size
 - TAM-60: disease-free survival time

COXEN Score of clinical outcome for docetaxel and tamoxifen breast cancer trials

Comparison of COXEN Score to treatment outcome indices
In vitro model prediction on single-compound breast cancer clinical trials

Primary tumor response to neoadjuvant doxcetaxel (DOC-24)

- Responder: Tumor size
- Sensitive: COXEN Prediction
- Non-responder: Tumor size
- Non-responder: COXEN Prediction

\[p\text{-value} = 0.033 \]

Survival following adjuvant tamoxifen (TAM-60)

- Predicted responders
- Predicted non-responders

\[p\text{-value} = 0.021 \]

Fraction Disease-Free

Time (months)
Consistent prediction on combination chemotherapies for diverse patient sets?

Wasn’t the prediction useful only for each patient set?

Are we ready to use unaltered in vitro-based models to forecast & guide both clinical response and survival of diverse patient sets treated by combination chemotherapy?
COXEN Prediction of Response to Combination Chemotherapy in Paired Trials

<table>
<thead>
<tr>
<th>Cancer Type</th>
<th>Study Name</th>
<th>Agent or Combination</th>
<th>Score probability Responders (mean±/2 Std)</th>
<th>Score probability Non-Responders (mean±/2 Std)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bladder</td>
<td>BL-MVAC-Jap</td>
<td>Methotrexate</td>
<td>0.625 +/- 0.071</td>
<td>0.371 +/- 0.071</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vinblastine</td>
<td>0.594 +/- 0.071</td>
<td>0.358 +/- 0.079</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adriamycin</td>
<td>0.552 +/- 0.078</td>
<td>0.402 +/- 0.090</td>
<td>0.049</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cisplatin</td>
<td>0.570 +/- 0.076</td>
<td>0.364 +/- 0.080</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AC</td>
<td>0.947 +/- 0.022</td>
<td>0.794 +/- 0.054</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>BL-MVAC-Den</td>
<td>Methotrexate</td>
<td>0.534 +/- 0.122</td>
<td>0.506 +/- 0.168</td>
<td>0.769</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vinblastine</td>
<td>0.602 +/- 0.192</td>
<td>0.490 +/- 0.166</td>
<td>0.764</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adriamycin</td>
<td>0.756 +/- 0.121</td>
<td>0.441 +/- 0.154</td>
<td>0.071</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cisplatin</td>
<td>0.783 +/- 0.075</td>
<td>0.442 +/- 0.148</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AC</td>
<td>0.969 +/- 0.003</td>
<td>0.643 +/- 0.140</td>
<td>0.038</td>
</tr>
<tr>
<td>Ovarian</td>
<td>OV-Plat</td>
<td>Carboplatin</td>
<td>0.715 +/- 0.074</td>
<td>0.563 +/- 0.141</td>
<td>0.034</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Taxol</td>
<td>0.429 +/- 0.087</td>
<td>0.223 +/- 0.114</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CT</td>
<td>0.826 +/- 0.061</td>
<td>0.638 +/- 0.132</td>
<td>0.007</td>
</tr>
<tr>
<td>Breast</td>
<td>BR-TFAC-MDA</td>
<td>Taxol</td>
<td>0.568 +/- 0.130</td>
<td>0.345 +/- 0.072</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(Hess-133)</td>
<td>5-FU</td>
<td>0.549 +/- 0.119</td>
<td>0.472 +/- 0.077</td>
<td>0.146</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adriamycin</td>
<td>0.326 +/- 0.135</td>
<td>0.164 +/- 0.061</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cyclophosphamide</td>
<td>0.340 +/- 0.138</td>
<td>0.218 +/- 0.071</td>
<td>0.064</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FAC</td>
<td>0.721 +/- 0.116</td>
<td>0.576 +/- 0.072</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>BR-GED</td>
<td>Gemcitabine</td>
<td>0.219 +/- 0.046</td>
<td>0.154 +/- 0.033</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Epirubicin</td>
<td>0.430 +/- 0.113</td>
<td>0.324 +/- 0.057</td>
<td>0.055</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Docetaxel</td>
<td>0.804 +/- 0.076</td>
<td>0.726 +/- 0.042</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GED</td>
<td>0.919 +/- 0.034</td>
<td>0.859 +/- 0.023</td>
<td>0.003</td>
</tr>
<tr>
<td>Survivor</td>
<td>OV-CT</td>
<td>Carboplatin</td>
<td>0.498 +/- 0.253</td>
<td>0.202 +/- 0.212</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Taxol</td>
<td>0.397 +/- 0.227</td>
<td>0.114 +/- 0.136</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CT</td>
<td>0.721 +/- 0.213</td>
<td>0.310 +/- 0.224</td>
<td>0.008</td>
</tr>
<tr>
<td>Breast</td>
<td>BR-FAC-Duke</td>
<td>5-FU</td>
<td>0.514 +/- 0.112</td>
<td>0.301 +/- 0.155</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adriamycin</td>
<td>0.211 +/- 0.107</td>
<td>0.036 +/- 0.042</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cyclophosphamide</td>
<td>0.263 +/- 0.118</td>
<td>0.114 +/- 0.124</td>
<td>0.052</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FAC</td>
<td>0.611 +/- 0.120</td>
<td>0.392 +/- 0.177</td>
<td>0.033</td>
</tr>
</tbody>
</table>
COXEN Prediction of Overall Survival to Combination Chemotherapy in Breast Cancer

BR-FAC

P=0.053
(N=45)

Time (month)

Proportion of Survival

- Red: Predicted Responders (19)
- Blue: Predicted Nonresponders (26)
Question: Will this performance be realized in a completely-blinded prospective setting in practice?
Three multi-gene prediction modeling & Blinded prospective application

Model Development

- General Breast Cancer Patient Population (N=251, Miller 2005)
- NCI-60 Panel
 - TFAC Drugs
- COXEN
 - In vitro COXEN GEM
 - T F A C
 - In vivo COXEN GEM
 - T F A C
 - Human GEM
 - TA
 - TFAC

TFAC Treated Breast Cancer Patient Set (N=133, Hess-133)
- Tumor Sample Taken
- Tumor Profiling
- Responders
- Non Responders
- Biomarker & Model Development
- Blinded Prospective Model Application
 - Prospective Applications of Models to TFAC-treated 100 Patients
Prediction by three multi-gene modeling strategies

<table>
<thead>
<tr>
<th>Study Name</th>
<th>Single Agent or Combination</th>
<th>Responders GEM Scores (mean±/− 95% CI)</th>
<th>Non-Responders GEM Score (mean±/− 95% CI)</th>
<th>p-value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vitro</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COXEN</td>
<td>5-FU</td>
<td>0.447+/−0.229</td>
<td>0.426+/−0.074</td>
<td>0.848</td>
</tr>
<tr>
<td>GEM</td>
<td>Adriamycin</td>
<td>0.168+/−0.170</td>
<td>0.235+/−0.078</td>
<td>0.459</td>
</tr>
<tr>
<td></td>
<td>Cyclophosphamide</td>
<td>0.146+/−0.176</td>
<td>0.160+/−0.061</td>
<td>0.879</td>
</tr>
<tr>
<td></td>
<td>TFAC^</td>
<td>0.659+/−0.192</td>
<td>0.601+/−0.075</td>
<td>0.562</td>
</tr>
<tr>
<td>Human GEM</td>
<td>TFAC^</td>
<td>0.480+/−0.158</td>
<td>0.234+/−0.057</td>
<td>0.006**</td>
</tr>
<tr>
<td>In vivo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COXEN</td>
<td>5-FU</td>
<td>0.262+/−0.057</td>
<td>0.254+/−0.023</td>
<td>0.787</td>
</tr>
<tr>
<td>GEM</td>
<td>Adriamycin</td>
<td>0.365+/−0.098</td>
<td>0.239+/−0.037</td>
<td>0.019*</td>
</tr>
<tr>
<td></td>
<td>Cyclophosphamide</td>
<td>0.366+/−0.135</td>
<td>0.251+/−0.049</td>
<td>0.106</td>
</tr>
<tr>
<td></td>
<td>TA</td>
<td>0.613+/−0.155</td>
<td>0.380+/−0.055</td>
<td>0.002**</td>
</tr>
<tr>
<td></td>
<td>TFAC^</td>
<td>0.755+/−0.133</td>
<td>0.595+/−0.052</td>
<td>0.028*</td>
</tr>
</tbody>
</table>
Concordant Prediction Performance of three modeling strategies
Consistent predicted ranks by three models

- COXEN in vitro
- HumanGEM (TFAC)
- COXEN in vivo

- GEM (T)
- GEM (TA)

Correlation coefficients:
- r = 0.65 (p = 3.9e-13)
- r = 0.75 (p = 2.2e-16)
- r = 0.90 (p = 1.2e-19)
Highly encouraging possibility in efficiently developing in vitro-based prediction models for therapeutic response

- Concordant prediction of unaltered *in vitro*-based models on geographically and ethnically diverse patient sets
- Validated by a completely-blinded prospective prediction

Are *in vitro*-based models ready for clinical use?

- NOT YET represent validation of a pre-defined predictor with a pre-set threshold to call a case + (responder) or – (non-responder)
- rather shows proof-of-a-concept, illustrating the *in vitro*-based models are truly informative (from each ROC curve) in stratifying patients’ responses

→ A standard diagnosis assay platform and procedure should be defined for routine clinical practice, from which a fixed cutoff value can be defined for a target patient population
Conclusion

- *in vitro*-based models are limited for the compounds that show no relevant drug activities *in vitro*, e.g. anti-angiogenesis compounds

- Validation and validation for many predictive *in vitro*-based models for translation to clinical practice!
 - Validate on historical FFPE patient samples in ethnically, geographically-diverse clinical settings based on standardized diagnosis assay platforms and procedures
 - Prospective clinical trials with, e.g. standard combination chemotherapy arm vs. genomic-guided arms among current equivalent therapeutic options

- Need to establish, maintain, & integrate infrastructure:
 - 1) genomics/proteomics/other molecular databases, 2) patient sample archives, 3) clinical information database

→ Personalize therapies for better cure of breast cancer patients in a near sight!!